From monopoles to polarity

Polarity was always an essential component of natural philosophy and even of plain thought, but the advent of the theory of electric charge replaced a living idea with a mere convention.

Regarding the universal spherical vortex, we mentioned earlier Dirac’s monopole hypothesis. Dirac conjectured the existence of a magnetic monopole just for the sake of symmetry: if there are electric monopoles, why can not exist magnetic monopoles too?

Mazilu, following E. Katz, suggest quietly that there is no need to complete this symmetry, since we already have a higher order symmetry: the magnetic poles appear separated by portions of matter, and the electric poles only appear separated by portions of space. This is in full accordance with the interpretation of electromagnetic waves as a statistical average of what occurs between space and matter.

And this puts the finger on the point everybody tries to avoid: it is said that the current is the effect that occurs between charges, but actually it is the charge what is defined by the current. Elementary charge is a postulated entity, not something that follows from definitions. Mathis can rightly say that the idea of elementary charge can be completely dispensed with and replaced by mass, which is justified by dimensional analysis and greatly simplifies the picture —freeing us, among other things, from “vacuum constants” such as permittivity and permeability that are completely inconsistent with the word “vacuum” [50].

In this light, there are no magnetic monopoles, because there are no electric monopoles nor dipoles to begin with. The only things that would exist are gradients of a neutral charge, photons producing attractive or repulsive effects according to the relative densities and the screening exerted by other particles. And by the way, it is this purely relative and changing sense of shadow and light what characterized the original notion of yin and yang and polarity in all cultures until the great invention of elementary charge.

So it can well be said that electricity killed polarity, a death that will not last long since polarity is a much larger and more interesting concept. It is truly liberating for the imagination and our way of conceiving Nature to dispense with the idea of bottled charges everywhere.

Yes, it is more interesting even for such a theoretical subject as the monopole. Theoretical physicists have even imagined global cosmological monopoles. But it is enough to imagine a universal spherical vortex like the one already mentioned, without any kind of charge, but with self-interaction and a double motion for the rotations associated with magnetism and the attractions and repulsions associated with charges to arise. The same reversals of the field in Weber’s electrodynamics already invited to think that the charge is a theoretical construct.

We should come to see electromagnetic attraction and repulsion as totally independent of charge, and conversely, the unique field that includes gravity, as capable of both attraction and repulsion. This is the condition, not to unify, but to approach the effective unity that we presuppose in Nature.


The issue of polarity leads us to think of another great theoretical problem for which an experimental correlate is sought: the Riemann zeta function. As we know, basic aspects of this function present an enigmatic similarity with the random matrices of subatomic energy levels and many other collective features of quantum mechanics. Science looks for mathematical structures in physical reality, but here on the contrary we would have a physical structure reflected in a mathematical reality. Great physicists and mathematicians such as Berry or Connes proposed more than ten years ago to confine an electron in two dimensions under electromagnetic fields to “get its confession” in the form of the zeros of the function.

Polar zeta

There has been a great deal of discussion about the dynamics capable of recreating the real part of the zeros of the Riemann zeta function. Berry surmises that this dynamics should be irreversible, bounded and unstable, which makes a big difference for the ordinary processes expected from the current view of fundamental fields, but it is closer to quantum thermomechanics, or what is the same, irreversible quantum thermodynamics. Moreover, it seems that what it is at stake here is the most basic arithmetic relationship between addition and multiplication, as opposed to the scope of multiplicative and additive reciprocities in physics.

Most physicists and mathematicians think that there is nothing to scratch about the nature of the imaginary numbers or the complex plane; but as soon as they have to deal with the zeta function, there is hardly anyone who does not begin with an interpretation of the zeros of the function —especially when it comes to its connections with quantum mechanics. So it seems that only when there are no solutions the interpretation matters.

Maybe it would be healthy to purge the calculus in the sense that Mathis asks for and see to what extent it is possible to obtain results in the domain of quantum mechanics without resorting to complex numbers or the stark heuristics methods of renormalization. In fact, in Mathis’ version of calculus each point is equivalent to at least one distance, which should give us additional information. If the complex plane allows extensions to any dimension, we should check what is its minimum transposition into real numbers, both for physical and arithmetic problems. After all, Riemann’s starting point was the theory of functions, rather than number theory.

Surely if physicists and mathematicians knew the role of the complex plane in their equations they would not be thinking of confining electrons in two dimensions and other equally desperate attempts. The Riemann zeta function is inviting us to inspect the foundations of calculus, the bases of dynamics, and even our models of the point particles and elementary charge.

The zeta function has a pole at unity and a critical line with a value of 1/2 where lie all its known non-trivial zeros. The carriers of “elementary charge”, the electron and the proton, both have a spin with a value of 1/2 and the photon that connects them, a spin with a value equal to 1. But why should spin be a statistical feature and not charge? Possibly the interest of the physical analogies for the zeta function would be much greater if the concept of elementary charge were to be dispensed with.

That the imaginary part of the electron wave function is linked to spin and rotation is no mystery. But the imaginary part associated with the quantization of particles of matter or fermions, among which is the electron has no obvious relation with spin. However, in classical electromagnetic waves we can deduce that the imaginary part of the electrical component is related to the real part of the magnetic component, and vice versa. The scattering amplitudes and their analytical continuation cannot be separated from the spin statistics, and vice versa; and both are associated with timelike and spacelike phenomena respectively. There can be also different analytical continuations with different meanings and geometrical interpretations in the Dirac algebra.

In electrodynamics all the development of the theory goes very explicitly from global to local. Gauss’ divergence theorem of integral calculus, which Cauchy used to prove his residue theorem of complex analysis, is the prototype of the cyclic or period integral. Like Gauss law of electrostatics, is originally independent of metric, though this is seldom taken into account. The Aharonov-Bohm integral, a prototype of geometric phase, is very similar in structure to the Gauss integral.

As Evert Jan Post emphasize time and again, the Gauss integral works as a natural counter of net charge, just as the Aharonov-Bohm integral works for quantized units of flux in self-interaction of beams. This clearly speaks in favor of the ensemble interpretation of quantum mechanics, in contrast to the Copenhagen interpretation stating that the wave function corresponds to a single individual system with special or non-classical statistics. The main statistical parameters here would be, in line with Planck’s 1912 work in which he introduced the zero point energy, the mutual phase and orientation of the ensemble elements [51]. Of course orientation is a metric-independent property.

Naturally, this integral line of reasoning shows its validity in the quantum Hall effect and its fractional variant, present in two-dimensional electronic systems under special conditions; this would bring us back to the above-mentioned attempts of electron confinement, but from the angle of classical, ordinary statistics. In short, if there is a correlation between this function and atomic energy levels, it should not be attributed to some special property of quantum mechanics but to the large random numbers generated at the microscopic level.

If we cannot understand something in the classical domain, hardly we will see it more clearly under the thick fog of quantum mechanics. There are very significant correlates of Riemann zeta in classical physics without the need to invoke quantum chaos; and in fact well known models such as those of Berry, Keating and Connes are semiclassical, which is a way to stay in between. We can find a purely classical exponent of the zeta function in dynamic billiards, starting with a circular billiard, which can be extended to other shapes like ellipses or the so-called stadium shape, a rectangle capped with two semicircles.

The circular billiard dynamics with a point particle bouncing is integrable and allows to model, for instance, the electromagnetic field in resonators such as microwave and optical cavities. If we open holes along the boundary, so that the ball has a certain probability of escape, we have a dissipation rate and the problem becomes more interesting. Of course, the probability depends on the ratio between the size of the holes and the size of the perimeter.

The connection with the prime numbers occurs through the angles in the trajectories according to a module 2 π/n. Bunimovich and Detteman showed that for a two hole problem with holes separated by 0º, 60º, 90º, 120º or 180º the probability is uniquely determined by the pole and non-trivial zeros of the Riemann zeta function [52]. The sum over can be determined explicitly and involves terms that can be connected with Fourier harmonic series and hypergeometric series. I do not know if this result may be extended to elliptical boundaries, which are also integrable. But if the boundary of the circle is smoothly deformed to create a stadium-like shape, the system is not integrable anymore and becomes chaotic, requiring an evolutionary operator.

Dynamic billiards have multiple applications in physics and are used as paradigmatic examples of conservative systems and Hamiltonian mechanics; however the “leakage” allowed to the particles is nothing more than a dissipation rate, and in the most explicit manner possible. Therefore, our guess that the zeta should be associated with thermomechanical systems that are irreversible at a fundamental level it is plain to understand —it is Hamiltonian mechanics that begs the exception to begin with. Since it is assumed that fundamental physics is conservative, there is a need for “a little bit open” closed systems, when, according to our point of view, what we always have is open systems that are partially closed. And according to our interpretation, physics has the question upside-down: a system is reversible because it is open, and it is irreversible to the extent that becomes closed, differentiated from the fundamental homogeneous medium.

From a different angle, the most apparent aspect of electromagnetism is light and color. Goethe said that color was the frontier phenomenon between shadow and light, in that uncertain region we call penumbra. Of course his was not a physical theory, but a phenomenology, which not only does not detract from it but adds to it. Schrödinger’s theory of color space of 1920, based on arguments of affine geometry though with a Riemannian metric, is somewhat halfway between perception and quantification and can serve us, with some improvements introduced later, to bring together visions that seem totally unconnected. Mazilu shows that it possible to obtain matrices similar to those arising from field interactions [53].

Needless to say, the objection to Goethe was that his concept of polarity between light and darkness, as opposed to the sound polarity of electric charge, was not justified by anything, but we believe that it is just the opposite. All that exists are density gradients; light and shadow can create them, a charge that is only a + or — sign attached to a point, can not. Colors are within light-and-darkness as light-and-darkness are within space-and-matter.

It is said, for example, that the Riemann zeta function could play the same role for chaotic quantum systems as the harmonic oscillator does for integrable quantum systems. Maybe. But do we know everything about the harmonic oscillator? Far from it, as the Hopf fibration or the monopole remind us. On the other hand, the first appearance of the zeta function in physics was with Planck’s formula for blackbody radiation, where it enters the calculation of the average energy of what would later be called “photons”.

The physical interpretation of the zeta function always forces us to consider the correspondences between quantum and classical mechanics. Therefore, a problem almost as intriguing as this should be finding a classical counterpart to the spectrum described by Planck’s law; however, there seems to be no apparent interest in this. Mazilu, again, reminds us the discovery by Irwin Priest in 1919 of a simple and enigmatic transformation under which Planck’s formula yields a Gaussian, normal distribution with an exquisite correspondence over the whole frequency range [54].

In fact, the correspondence between quantum mechanics and classical mechanics is an incomparably more relevant issue on a practical and technological level than that of the zeta function. As for the theory, there is no clarification from quantum mechanics about where the transition zone would be. There are probably good reasons why this field receives apparently so little attention. However, it is highly probable that Riemann’s zeta function unexpectedly connects different realm of physics, making it a mathematical object of unparalleled depth.

The point is that there is no interpretation for the cubic root of the frequency of Priest transformation. Referring to the cosmic background radiation, “and perhaps to thermal radiation in general”, Mazilu tries his best guess in order to finish with this observation: “Mention should be made that such a result can very well be specific to the way the measurements of the radiation are usually made, i.e. by a bolometer”. Leaving this transformation aside, various more or less direct ways of deriving Planck’s law from classical assumptions have been proposed, from that suggested by Noskov on the basis of Weber’s electrodynamics to that of C.K. Thornhill [55]. Thornhill proposed a kinetic theory of electromagnetic radiation with a gaseous ether composed of an infinite variety of particles, where the frequency of electromagnetic waves is correlated with the energy per unit mass of the particles instead of just the energy —obtaining the Planck distribution in a much simpler way.

The statistical explanation of Plank’s law is already known, but Priest’s Gaussian transformation demands a physical explanation for classical statistics. Mazilu makes specific mention of the measurement device used, in this case the bolometer, based on an absorptive element —the Riemann zeta function is said to correspond to an absorption spectrum, not an emission spectrum. If today metamaterials are used to “illustrate” space-time variations and mock black holes —where the zeta function is also used to regularize calculations- they could be used with much sounder arguments to study variations of the absorption spectrum to attempt a reconstruction by a sort of reverse engineering. The enigma of Priest’s formula could be approached from a theoretical as well as a practical and constructive point of view —although the very explanations for the performance of metamaterials are controversial and would have to be purged of numerous assumptions.

Of course by the time Priest published his article the idea of quantization had already won the day. His work fell into oblivion, and little else is known about the author except for his dedication to colorimetry, in which he established a criterion of reciprocal temperatures for the minimum difference in color perception [56]; of course these are perceptive temperatures, not physical ones; the correspondence between temperatures and colors was never found. If there is an elementary additive and subtractive algebra of colors, there must also be a product algebra, surely related to their perception. This brings to mind the so-called non-spectral line of purples between the red and violet ends of the spectrum, the perception of which is limited by the luminosity function. With a proper correspondence this could give as a beautiful analogy that the reader may try to guess.

On the other hand, it should not be forgotten that Planck’s constant has nothing to do with the uncertainty in the energy of a photon, though today they are routinely associated [57]. Noskov’s longitudinal vibrations in the moving bodies immediately remind us of the zitterbewegung or “trembling motion” introduced by Schrödinger to interpret the interference of positive and negative energy in the relativistic Dirac equation. Schrödinger and Dirac conceived this motion as “a circulation of charge” generating the magnetic moment of the electron. The frequency of the rotation of the zbw would be of the order of 1021 hertz, too high for detection except for the resonances.

David Hestenes has analyzed various aspects of the zitter in his view of quantum mechanics as self-interaction. P. Catillon et al. conducted an electron channeling experiment on a crystal in 2008 to confirm de Broglie’s internal clock hypothesis. The resonance detected experimentally is very close to the de Broglie frequency, which is half the frequency of the zitter; the de Broglie period would be directly associated with mass, as has recently been suggested. There are several models for creating resonances with the electron reproducing the zeta function in cavities and Artin’s dynamic billiards, but they are not usually associated with the zitter or the de Broglie internal clock, since this does not fit into the conventional version of quantum mechanics. On the other hand, it would be advisable to consider a totally classical zero-point energy as can be followed from the works of Planck and his continuators in stochastic electrodynamics, though all these models are based on point particles [58].

Math, it is said, is the queen of sciences, and arithmetic the queen of mathematics. The fundamental theorem of arithmetic places prime numbers at its center, as the more irreducible aspect of the integer numbers. The main problem with prime numbers is their distribution, and the best approximation to their distribution comes from the Riemann zeta function. This in turn has a critical condition, which is precisely to find out if all the non-trivial zeros of the function lie on the critical line. Time past and competition among mathematicians have turn the task of proving the Riemann hypothesis into the K-1 of mathematics, which would involve a sort of duel between man and infinity.

William Clifford said that geometry was the mother of all sciences, and that one should enter it bending down like children; it seems on the contrary that arithmetic makes us more haughty, because in order to count we do not need to look down. And that, looking down to the most elementary and forgetting about the hypothesis as much as possible, would be the best thing for the understanding of this subject. Naturally, this could also be said of countless questions where the overuse of mathematics creates too rarefied a context, but here at least a basic lack in understanding is admitted.

There seem to be two basic ways of understanding the Riemann zeta function: as a problem posed by infinity or as a problem posed by unity. So far modern science, driven by the history of calculus, has been much more concerned with the first aspect than with the second, even if both are inextricably linked.

It has been said that if a zero is found outside the critical line —if Riemann’s hypothesis turns out to be false-, that would create havoc in number theory. But if the first zeros already evaluated by the German mathematician are well calculated, the hypothesis can be practically taken for granted, without the need to calculate more trillions or quadrillions of them. In fact, and in line with what was said in the previous chapter, it seems much more likely to find flaws in the foundations of calculus and its results than to find zeros off the line, and in addition the healthy creative chaos that would produce would surely not be confined to a single branch of math.

Of course, this applies to the evaluation of the zeta function itself. If Mathis’ simplified calculus, using a unitary interval criterion, finds divergences even for the values of the elementary logarithmic function, these divergences would have to be far more important in such convoluted calculations like those of this function. And in any case it gives us a different criterion for the evaluation of the function; furthermore, there might be a criterion to settle if certain divergences and error terms cancel out.

The devil’s advocates in this case would not have done the most important part of their work yet. On the other hand, fractional derivatives of this function have been calculated allowing us to see where the real and imaginary parts converge; this is of interest both for complex analysis and physics. In fact it is known that in physical models the evolution of the system with respect to the pole and zeros usually depends on the dimension, which in many cases is fractional or fractal, and even multi-fractal for potentials associated with the number themselves.

Arithmetic and counting exist primarily in the time domain, and there are good reasons to think that methods based on finite differences should take a certain kind of preference when dealing with changes in the time domain —since with infinitesimals the act of counting dissolves. The fractional analysis of the function should also be concerned with sequential time. Finally, the relationship between discrete and continuous variables characteristic of quantum mechanics should also be connected with the methods of finite differences.

Quantum physics can be described more intuitively with a combination of geometric algebra and fractional calculus for cases containing intermediate domains. In fact, these intermediate domains can be much more numerous than we think if we take into account both the mixed assignment of variables in orbital dynamics and the different scales at which waves and vortices can occur between the field and the particles in a different perspective like Venis’. The same self-interaction of the zitterbewegung calls for a much greater concreteness than hitherto achieved. This movement allows, among other things, a more directly geometric, and even classical, translation of the non-commutative aspects of quantum mechanics which in turn allow for a key natural connection between discrete and continuous variables.

Michel Riguidel makes the zeta function object of an intensive work of interaction in search of a morphogenetic approach. It would be great if the computing power of machines can be used to refine our intuition, interpretation and reflection, rather than the other way around. However, here it is easy to present two major objections. First, the huge plasticity of the function, which although completely differentiable, according to Voronin’s theorem of universality contains any amount of information an infinite number of times.

The second objection is that if the function already has an huge plasticity, and on the other hand graphics can only represent partial aspects of the function at any rate, further deformations and transformations, however evocative they may be, still introduce new degrees of arbitrariness. The logarithm can be transformed into a spiral halfway between the line and the circle, and create spiral waves and whatnot, but in the end they are just representations. The interest, at any rate, is in the interaction function-subject-representation —the interaction between mathematical, conceptual and representational tools.

But there is no need for more convoluted concepts. The greatest obstacle to go deeper into this subject, as in so many others, lies in the stark opposition to examining the foundations of calculus, classical and quantum mechanics. The more complex the arguments to prove or disprove the hypothesis, be it true or false, the less importance the result can have for the real world.

It is often said that the meaning of the Riemann hypothesis, and even of all the computed zeros of the function, is that the prime numbers have as random a distribution as possible, which of course leaves wide open how much randomness is possible. We may have no choice but to talk about apparent randomness.

But even so, there we have it: the highest degree of apparent randomness in a simple linear sequence generalizable to any dimension hides an ordered structure of unfathomable richness.

Michel Riguidel: Morphogenesis of the Zeta Function in the Critical Strip by Computational Approach
Michel Riguidel: Morphogenesis of the Zeta Function in the Critical Strip by Computational Approach


Let us return to the qualitative aspect of polarity and its problematic relationship with the quantitative realm. Not only the relation between the qualitative and the quantitative is problematic, but the qualitative interpretation itself raises a basic question inevitably connected with the quantitative.

For P. A. Venis everything can be explained with yin and yang, seen in terms of expansion and contraction, and of a higher or a lower dimension. Although this interpretation greatly deepens the possibility of connection with physics and mathematics, the version of the yin yang theory he uses is that of the Japanese practical philosopher George Ohsawa. In the Chinese tradition, yin is basically related to contraction and yang to expansion. Venis surmises that the Chinese interpretation may be more metaphysical and Ohsawa’s more physical; and latter he thinks that the former could be more related to the microcyclical processes of matter and the latter to the mesocyclical processes more typical of our scale of observation, but both views seem to be quite divergent.

Without resolving these very basic differences we cannot expect to soundly connect these categories with quantitative aspects, although one may still speak of contraction and expansion, with or without relation to dimensions. But on the other hand, any reduction of such vast and nuanced categories to mere linear relations with coefficients of separate aspects such as “expansion” or “contraction” runs the risk of becoming a poor simplification dissolving the value of the qualitative in appreciating nuances and degrees.

Venis’ interpretation is not superficial at all, and on the contrary it is easy to see that it gives a much deeper dimension, quite literally, to these terms. The extrapolation to aspects such as heat and color may seem to lack the desirable quantitative and theoretical justification, but in any case they are logical and consistent with his general vision and are wide open to delve into the subject. However, the radical disagreement on the most basic qualifications is already a challenge for interpretation.

It should be said right from the start that the Chinese version cannot be reduced to the understanding of yin and yang as contraction and expansion, nor to any pair of conceptual opposites to the exclusion of all the others. Contraction and expansion are only one of the many possible pairs, and even if they are often used, as with any other pair they depend entirely on the context. Perhaps the most common use is that of “full” and “empty”, which on the other hand is intimately linked to contraction and expansion, although they are far from identical. Or also, depending on the context, the tendency towards fullness or void; it is not for nothing the common distinction between young and old yang, or young and old yin. Reversal is the way of Tao, so it is only natural that these points of potential, spontaneous reversal are also notorious in the Taijitu.

On the other hand, qualities such as full and empty not only have a clear translation in differential terms for field theories, hydrodynamics or even thermodynamics, but also have an immediate meaning, although much more diffuse, for our inner sense, which is precisely the common sense or sensorium as a whole, our undifferentiated sensation prior to the imprecise “sensory cut” which seems to generate the field of our five senses. This common sensorium also includes kinesthesia, our immediate perception of movement and our self-perception, which can be both of the body and of consciousness itself.

This inner sense or common sensorium is just another expression for the homogeneous, undivided medium that we already are —the background and tacit reference for feeling, perception and thought. And any kind of intuitive or qualitative knowledge takes that as the reference, which obviously goes beyond any rational or sensory criteria of discernment. Conversely, we could say that this background is obviated in formal thought but is assumed in intuitive knowledge. Physicists often speak of a result being “counter-intuitive” only in the sense that it goes against the expected or acquired knowledge, not against intuition, which it would be vain to define.

However it would be absurd to say that the qualitative and the quantitative are completely separate spheres. Mathematics is both qualitative and quantitative. We use to hear that there are more qualitative branches, like topology, and more quantitative branches like arithmetic or calculus, but on closer inspection this hardly makes any sense. Venis’ morphology is totally based on the idea of flow and on such elementary notions as points of equilibrium and points of inversion. Newton himself called his differential calculus “method of fluxions”, the analysis of fluent quantities, and the methods for evaluating curves are based on the identification of turning points. So there is a compatibility that not only is not forced but it is natural; if modern science has advanced in the opposite direction towards increasing abstraction, which in turn is the just counterbalance to its utilitarianism, is another story.

Polarity and duality are quite different things but it is useful to perceive their relation before the convention of electric charge was introduced. The reference here cannot fail to be the electromagnetic theory, which is the basic theory of light and matter, and to a large extent also of space and matter.

Obviously, it would be absurd to say that a positive charge is yang and a negative charge is yin, since between both there is only an arbitrary change of sign. In the case of an electron or a proton other factors come in play, such as the fact that one is much less massive than the other, or that one is peripheral and the other is at the core of the atom. Let us take another example. At the biological and psychological level, we live between stress and pressure, which frame our way of perceiving things. But it would also be absurd to say that one or the other is yin or yang insofar as we understand tension only as a negative pressure, or viceversa. In other words, mere changes of sign seems to us trivial; but they become more interesting qualitatively and quantitatively when they involve other transformations.

Whether all or nothing is trivial depends only on our knowledge and attention; a superficial knowledge may judge as trivial things that in fact are are full of content. The polarity of charge may seem trivial, as may seem the duality of electricity and magnetism, or the relationship between kinetic and potential energy. Actually none of them is trivial at all, but when we try to see everything together we already have a space-time algebra with a huge range of variants.

In the case of pressure and stress or tension, the more apparent transformation is the deformation of a material. Strain-stress-pressure relations define, for instance, the properties of the pulse, whether in the pulsology of traditional Chinese or Indian medicine or in modern quantitative pulse analysis; but that also leads us to the stress-strain relations that define the constitutive law in materials science. Constitutive relations, on the other hand, are the complementary aspect of Maxwell’s electromagnetic field equations that tell us how the field interacts with matter.

It is usually said that electricity and magnetism, which are measured with dimensionally different units, are the dual expression of the same force. As we have already pointed out, this duality implies the space-matter relationship, both for the waves and for what is supposed to be the material support of the electric and magnetic polarity; in fact, and without going into further detail, this seems to be the key distinction.

All gauge field theories can be expressed by forces and potentials but also by non-trivial pressure-strain-stress variations that involve feedback, and there is feedback at any rate because first of all there is a global balance, and only then a local one. These relations are already present in Weber force law, only in this one what is “deformed” is force, instead of matter. The great virtue of Maxwell’s theory is to make explicit the duality between electricity and magnetism, hidden in Weber’s law. But we must insist, with Nicolae Mazilu, that we can find the essence of the gauge theory already in Kepler’s problem.

Constitutive relations with definite values such as permittivity and permeability cannot occur in empty space, so they can only be a statistical average of what occurs in between matter and space. Matter can sustain stress without exhibiting strain or deformation, and space can deform without stress or tension —this runs in parallel with the basic signatures of electricity and magnetism, which are tension and deformation. Strain and tension are not yin or yang, but to yield easily to deformation is yin, and to withstand tension without deformation is yang —at least as far as the material aspect is concerned. Of course between both there must be a whole continuous spectrum, often affected by many other considerations.

However, from the point of view of space, to which we do not have direct access but through the mediation of light, we could see the opposite: the expansion without coercion would be pure yang, while the contraction may be seen as a reaction of matter to the expansion of space, or the radiations that fill it. The waves of radiation themselves are an intermediate and alternate process between contraction and expansion, between matter and space, which cannot exist separately. However, a deformation is a purely geometrical concept, while a tension or a force is not, being here where the proper domain of physics begins.

Perhaps in this way a criterion for reconciling the two interpretations can be discerned, not without careful attention to the overall picture of which they are part; each may have its range of application, but they cannot be totally separate.

It is a law of thought that concepts appear as pairs of opposites, there being an infinity of them; finding their relevance in nature is something else, and the problem becomes nearly unsolvable when quantitative sciences introduce their own concepts that are also subject to antinomies but of a very different order and certainly much more specialized. However, the simultaneous attention to the whole and to the details makes this a task far from impossible.

Much have been said about holism and reductionism in sciences but it must be remembered that physics to start with, never has been described in rigorously mechanical terms. Physicists hold onto the local application of gauge fields, only because that is what give them predictions, but the very concept of Lagrangian that makes all that possible is integral or global, not local. What is surprising is that this global character has not a proper use in fields such as medicine or biophysics.

Starting from these global aspects of physics, a genuine and meaningful connection between the qualitative and the quantitative is much more feasible. The conception of yin and yang is only one of many qualitative readings man has made of nature, but even taking into account the extremely fluid character of these distinctions it is not difficult to establish the correspondences. For example, with the three gunas of Samkya or the four elements and four humors of the Western tradition, in which fire and water are the extreme elements and air and earth are the intermediate ones; these also can be seen in terms of contraction and expansion, of pressure, tension and deformation.

Needless to say, the idea of balance is not exclusive of the Chinese conception either, since the same cross and the quaternary have always had a connotation of equilibrium that is totally elemental and of universal character. It is rather in modern physics that equilibrium ceases to have a central place due to inertia, although it cannot cease to be omnipresent and essential for the use of reason itself, as it is for logic and algebra. The possibility of contact between quantitative and qualitative knowledge depends both on the precise location we give to the concept of equilibrium and the correct appreciation of the context and global features of the so-called mechanics.

Unlike the usual scientific concepts, which inevitably tend to become more detailed and specialized, notions such as yin and yang are ideas of utmost generality, indexes to be identified in the most specific contexts; if we pretend to define them too much they also lose the generality that gives them their value as an intuitive aid. But also the most general ideas of physics have been subject to constant evolution and modification depending on the context, and we only have to look at the continuous transformations of quantitative concepts such as force, energy or entropy, not to mention issues such as the criterion and range of application of the three principles of classical mechanics.

Vortices can be expressed in the elegant language of the continuum, of compact exterior differential forms or geometric algebra; but vortices speak above all with a language very similar to that of our own imagination and the plastic imagination of nature. Therefore, when we observe the Venis sequence and its wide range of variations, we know that we have find an intermediate, but genuine, ground between mathematical physics and biology. In both, form follows function, but in the reverse engineering of nature that human science is, function should follow form to the very end.

In Venis account there is a dynamic equilibrium between the dimensions in which the vortex evolves. This widens the scope of the equilibrium concept but makes it more problematic to assess. Fractional calculus would have to be key to follow this evolution through the intermediate domains between dimensions, but this also rise interesting points for experimental measurements.

How dimensions higher than three can be interpreted is always an open question. If instead of thinking of matter as moving in a passive space, we think of matter as those portions to which space has no access, the same matter would start from the point or zero dimension. Then the six dimensions of the evolution of vortices would form a cycle from the emission of light by matter to the retraction of space and light into matter again —and the three additional dimensions would only be the process in the opposite direction, and from an inverse optic, which circumvent repetition.

This is just one way of looking at some aspects of the sequence among many possible ways, and the subject deserves a much more detailed study than we can devote to it here. One think is to look for some sort of symmetry, but there must be many more types of vortices than we know now, not to speak of the different scales of occurrence, and the multiple metamorphoses. Only in Venis’ work one can find the due introduction to these questions. Venis assumes the number of dimensions to be infinite, so we could not find and count them all. An indication of this would be the minimum number of meridians necessary to create a vortex, which increases exponentially with the number of dimensions and which the author associates with the Fibonacci series.

We can speak of polarity as long as we can appreciate a capacity for self-regulation. That is to say, not when we just count on apparently antagonistic forces, but when we can not help notice a principle above them. This capacity was always present since the very Kepler’s problem, and it is only telling that science has failed to recognize it. Weber’s force and potential are explicitly polar, Newton’s force is not, but the two-body problem exhibit a polar dynamics in any case. To call the evolution of celestial bodies “mechanics” is just a rationalization, and in fact we do not have a mechanical explanation of anything when we speak of fundamental forces, and probably we cannot have one. Only when we notice a self-regulating principle could we use the term dynamics honoring the original intention still present in that name.

Del monopolo a la polaridad

La polaridad fue siempre un componente esencial de la filosofía natural y aun del pensamiento sin más, pero la llegada de la teoría de la carga eléctrica sustituyó una idea viva por una simple convención.

A propósito del vórtice esférico universal, hablábamos antes de la hipótesis del monopolo de Dirac. Dirac conjeturó la existencia de un monopolo magnético por una mera cuestión de simetría: si existen monopolos eléctricos, ¿por qué no existen igualmente unidades de carga magnética?

Mazilu, siguiendo a E. Katz, razona que no hay ninguna necesidad de completar la simetría, puesto que en realidad ya tenemos una simetría de orden superior: los polos magnéticos aparecen separados por porciones de materia, y los polos eléctricos sólo se presentan separados por porciones de espacio vacío. Lo cual está en perfecta sintonía con la interpretación de las ondas electromagnéticas como un promedio estadístico de lo que ocurre entre el espacio y la materia.

Y que pone el dedo sobre la cuestión que se procura evitar: se dice que la corriente es el efecto que se produce entre cargas, pero en realidad es la carga la que está definida por la corriente. La carga elemental es una entidad postulada, no algo que se siga de las definiciones. Con razón puede decir Mathis que puede prescindirse por completo de la idea de carga elemental y sustituirla por la masa, lo que está justificado por el análisis dimensional y simplifica enormemente el panorama —librándonos entre otras cosas, de constantes del vacío como la permitividad y permeabilidad que son totalmente inconsecuentes con la misma palabra “vacío” [50].

Visto así, no se encuentran monopolos magnéticos porque para empezar tampoco existen ni monopolos eléctricos ni dipolos. Lo único que habría es gradientes de una carga neutra, fotones, produciendo efectos atractivos o repulsivos según las densidades relativas y la sombra o pantalla ejercida por otras partículas. Y por cierto, es este sentido puramente relativo y cambiante de la sombra y luz lo que caracterizaba la noción original del yin y el yang y la polaridad en todas las culturas hasta que llegó el gran invento de la carga elemental.

Así pues, bien puede decirse que la electricidad mató a la polaridad, muerte que no durará mucho tiempo puesto que la polaridad es un concepto mucho más vasto e interesante. Es verdaderamente liberador para la imaginación y nuestra forma de concebir la Naturaleza prescindir de la idea de cargas embotelladas por doquier.

Y es más interesante incluso para un objeto teorético tal como el monopolo. Los físicos teóricos han imaginado incluso monopolos cosmológicos globales. Pero basta con imaginar un vórtice esférico universal como el ya apuntado, sin ningún tipo de carga, pero con autointeracción y un movimiento doble para que surjan las rotaciones asociadas al magnetismo y las atracciones y repulsiones asociadas a las cargas. Las mismas inversiones del campo en la electrodinámica de Weber invitaban ya a pensar que la carga es un constructo teórico.

Deberíamos llegar a ver la atracción y repulsión electromagnéticas como totalmente independientes de las cargas, e inversamente, al campo único que incluye la gravedad, como capaz tanto de atracción como de repulsión. Esta es la condición, no ya para unificar, sino para acercarse a la unidad efectiva que presuponemos en la Naturaleza.


El tema de la polaridad nos lleva a pensar en otro gran problema teórico para el que se busca un correlato experimental: la función zeta de Riemann. Como es sabido ésta presenta una enigmática semejanza con las matrices aleatorias que describen niveles de energía subatómicos y otros muchos aspectos colectivos de la mecánica cuántica. La ciencia busca estructuras matemáticas en la realidad física, pero aquí por el contrario tendríamos una estructura física reflejada en una realidad matemática. Grandes físicos y matemáticos como Berry o Connes propusieron hace más de diez años confinar un electrón en dos dimensiones y someterlo a campos electromagnéticos para «obtener su confesión» con la forma de los ceros de la función.

Polar zeta

Se ha conjeturado ampliamente sobre la dinámica idónea para recrear la parte real de los ceros de la función zeta. Berry conjetura que esta dinámica debería ser irreversible, acotada e inestable, lo cual la aleja de los estados ordinarios de los campos fundamentales, pero no tanto de las posibilidades termomecánicas; tanto más si lo que está en cuestión es la relación aritmética entre la adición y la multiplicación, frente al alcance de las reciprocidades multiplicativas y aditivas en física.

Los físicos y matemáticos piensan en su inmensa mayoría que no hay nada que interpretar en los números imaginarios o el plano complejo; sin embargo, en cuanto se toca la función zeta, apenas hay nadie que no empiece por hablar de la interpretación de los ceros de la función —especialmente cuando se trata de su relación con la mecánica cuántica. A este respecto todo son muy débiles conjeturas, lo que demuestra que basta con que no se tengan soluciones para que sí haya un problema de interpretación, y de gran magnitud, por lo demás.

Tal vez, para saber a qué atenerse, habría que depurar el cálculo en el sentido en que lo hace Mathis y ver hasta qué punto se pueden obtener los resultados de la mecánica cuántica sin recurrir a los números complejos ni a los métodos tan crudamente utilitarios de la renormalización. De hecho en la versión del cálculo de Mathis cada punto equivale al menos a una distancia, lo que debería darnos información adicional. Si el plano complejo permite extensiones a cualquier dimensión, deberíamos verificar cuál es su traducción mínima en números reales, tanto para problemas físicos como aritméticos. Después de todo, el punto de partida de Riemann fue la teoría de funciones y el análisis complejo, antes que la teoría de los números.

Seguramente si físicos y matemáticos conocieran el rol del plano complejo en sus ecuaciones no estarían pensando en confinar electrones en dos dimensiones y otras tentativas igualmente desesperadas. La función zeta de Riemann nos está invitando a inspeccionar los fundamentos del cálculo, las bases de la dinámica, y hasta el modelo de la partícula puntual y carga elemental.

La función zeta tiene un polo en la unidad y una línea crítica con valor de 1/2 en la que aparecen todos los ceros no triviales conocidos. Obviamente los portadores de la “carga elemental”, el electrón y el protón, tienen ambos un espín con valor de 1/2 y el fotón que los acopla, uno con valor igual a 1. ¿Pero porqué el espín ha de ser un valor estadístico y la carga no? Está claro que hay una conexión íntima entre la descripción de los bosones y fermiones y las propiedades de la función zeta, que ya se ha aplicado a muchos problemas. El interés de las analogías físicas para la función zeta sería posiblemente mucho mayor si se prescindiera del concepto de carga elemental.

Que la parte imaginaria de la función de onda del electrón está ligada al espín y a la rotación no es ningún misterio. La parte imaginaria de las partículas de materia o fermiones, entre las que se cuenta el electrón no tiene sin embargo ninguna relación obvia con el espín. Ahora bien, en las ondas electromagnéticas clásicas se observa que la parte imaginaria del componente eléctrico está relacionada con la parte real del componente magnético, y al revés. Las amplitudes de dispersión y su continuación analítica no pueden estar separadas de las estadísticas de espín, y viceversa; y ambos están respectivamente asociados con fenómenos de tipo tiempo y tipo espacio. También puede haber distintas continuaciones analíticas con distintas interpretaciones geométricas en el álgebra de Dirac.

En electrodinámica todo el desarrollo de la teoría va de la forma más explícita de lo global a lo local. El teorema integral de Gauss, que Cauchy usó para demostrar su teorema del residuo del análisis complejo, da el prototipo de integral cíclica o de periodo, y originalmente está libre de especificaciones métricas —como lo está la ley de electrostática de Gauss, aunque esto muy rara vez se recuerda. La integral de Aharonov-Bohm, prototipo de fase geométrica, tiene una estructura equivalente a la de Gauss.

Como subraya Evert Jan Post, la integral de Gauss funciona como un contador natural de unidades de carga, igual que la de Aharonov-Bohm lo es para unidades de flujo cuantizadas en la autointerferencia de haces. Esto habla en favor de la interpretación colectiva o estadística de la mecánica cuántica como opuesta a la interpretación de Copenhague que enfatiza la existencia de un sistema individual con estadísticas no-clásicas. Los principales parámetros estadísticos serían aquí, en línea con el trabajo de Planck de 1912 en el que introdujo la energía de punto cero, la fase mutua y la orientación de los elementos del conjunto [51]. No hay ni que decir que la orientación es un aspecto independiente de la métrica.

Ni que decir tiene, este razonamiento integral demuestra toda su vigencia en el efecto Hall cuántico y su variante fraccional, presente en sistemas electrónicos bidimensionales sometidos a condiciones especiales; lo que nos llevaría a los mencionados intentos de confinamiento de electrones, pero desde el ángulo de la estadística ordinaria. En definitiva, si hay una correlación entre la función y los niveles de energía atómicos, ello no debería atribuirse a alguna propiedad especial de la mecánica cuántica sino a los grandes números aleatorios que pueden generarse a nivel microscópico.

Si algo no lo podemos entender en el dominio clásico, difícilmente lo vamos a ver más claro bajo las cortinas de niebla de la mecánica cuántica. Existen correlatos bien significativos de la zeta en física clásica sin necesidad de invocar el caos cuántico; y de hecho modelos bien conocidos como el de Berry, Keating y Connes son semiclásicos, lo que es una forma de quedarse a mitad de camino. Podemos encontrar un exponente clásico en los billares dinámicos, empezando con un billar circular, que puede extenderse a otras formas como elipses o la llamada forma de estadio, un rectángulo con dos semicírculos.

La dinámica del billar circular con una partícula puntual rebotando es integrable y sirve, por ejemplo, para modelar el comportamiento del campo electromagnético en resonadores tales como cavidades ópticas o de microondas. Si se abren rendijas en el perímetro, de modo que la bola tenga cierta probabilidad de escapar del billar, tenemos una tasa de disipación y el problema adquiere mayor interés. Por supuesto, la probabilidad depende de la ratio entre el tamaño de las aperturas y el del perímetro.

La conexión con los números primos viene a través de los ángulos en las trayectorias según un módulo 2 π/n. Bunimovich y Detteman demostraron que para un billar circular con dos aperturas separadas por 0, 60, 90, 120 o 180º la probabilidad está únicamente determinada por el polo y los ceros no triviales de la función zeta [52]. La suma total se puede determinar explícitamente y comporta términos que pueden conectarse con las series armónicas de Fourier y las series hipergeométricas. Desconozco si esto puede extenderse a contornos elípticos, que también son integrables. Es al pasar del contorno circular a contornos deformados como el del estadio que el sistema deja de ser integrable y se torna caótico, requiriendo un operador de evolución.

Los billares dinámicos tienen múltiples aplicaciones en física y se usan como ejemplo paradigmático de los sistemas conservativos y la mecánica hamiltoniana; sin embargo el “escape” que se permite a las partículas no es otra cosa que una tasa de disipación, y de la forma más explícita posible. Por lo tanto, nuestra idea inicial de que la zeta debería tener vigencia en sistemas termomecánicos irreversibles a un nivel fundamental es bien fácil de entender —es la mecánica hamiltoniana la que pide la excepción para empezar. Puesto que se asume que la física fundamental es conservativa, se buscan sistemas cerrados “un poco abiertos”, cuando, según nuestro punto de vista, lo que tenemos siempre es sistemas abiertos parcialmente cerrados. Y según nuestra interpretación, hemos entendido la cuestión al revés: un sistema es reversible porque es abierto, y es irreversible en la medida en que deviene cerrado.

Pasando a otro orden de cosas, el aspecto más evidente del electromagnetismo es la luz y el color. Goethe decía que el color era el fenómeno fronterizo entre la sombra y la luz, en esa incierta región a la que llamamos penumbra. Por supuesto lo suyo no era una teoría física, sino una fenomenología, lo que no sólo no le quita valor sino que se lo añade. La teoría del espacio del color de Schrödinger de 1920, basada en argumentos de geometría afín aunque con una métrica riemaniana, se encuentra a mitad de camino entre la percepción y la cuantificación y puede servirnos, con algunas mejoras introducidas posteriormente, para acercar visiones que parecen totalmente inconexas. Mazilu muestra que también aquí pueden obtenerse matrices semejantes a las que surgen de las interacciones de campo [53].

Ni que decir tiene que a Goethe se le objetó que su concepto de polaridad entre luz y oscuridad, a diferencia de la firmemente establecida polaridad de carga eléctrica, no estaba justificado por nada, pero nosotros creemos que es justamente lo contrario. Lo único que existen son gradientes; la luz y la sombra pueden crearlos, una carga que es sólo un signo + o — adscrito a un punto, no. El color está dentro de la luz-oscuridad como la luz-oscuridad está dentro del espacio-materia.

Se dice por ejemplo que la función zeta de Riemann podría jugar el mismo papel para los sistemas cuánticos caóticos que el oscilador armónico para los sistemas cuánticos integrables. ¿Pero se sabe todo del oscilador armónico? Ni mucho menos, ya vemos lo que ocurre con la fibración de Hopf o el mismo monopolo. Por otra parte, sabido es que la primera aparición de la zeta en la física es con la fórmula de radiación de cuerpo negro de Planck, donde entra en el cálculo de la energía promedio de lo que luego se llamaría “fotón”.

La interpretación física de la función zeta siempre obliga a plantearse las correspondencias entre la mecánica cuántica y la clásica. Por tanto, un problema casi tan intrigante como éste tendría que ser encontrar una contraparte clásica del espectro descrito por la ley de Planck; sin embargo las tendencias dominantes no parecen interesadas en encontrar una respuesta para esto. Mazilu, otra vez, nos recuerda el descubrimiento por Irwin Priest en 1919, de una sencilla y enigmática transformación bajo la cual la fórmula de Planck rinde una distribución gaussiana o normal con un ajuste exquisito a lo largo de todo el espectro [54].

En realidad el tema de la correspondencia entre la mecánica cuántica y la clásica es incomparablemente más relevante a nivel práctico y tecnológico que el de la función zeta. Y en cuanto a la teoría, tampoco existe ningún tipo de aclaración por parte de la mecánica cuántica sobre dónde se encontraría la zona de transición. Probablemente haya buenos motivos para que este campo reciba aparentemente tan poca atención. Sin embargo es altamente probable que la función zeta de Riemann conecte de manera inesperada distintos dominios de la física, lo que hace de ella un objeto matemático de un calado incomparable.

La cuestión es que no existe una interpretación para la raíz cúbica de la frecuencia de la transformación de Priest. Refiriéndose a la radiación cósmica de fondo, “y tal vez a la radiación térmica en general”, Mazilu no deja de hacer sus conjeturas para terminar con esta observación: “debería hacerse mención de que tal resultado bien podría ser específico de la forma en que las medidas de la radiación se hacen habitualmente, a saber, mediante un bolómetro”. Dejando a un lado esta transformación, se han propuesto diversas maneras más o o menos directas de derivar la ley de Planck de supuestos clásicos, desde la que sugiere Noskov partiendo de la electrodinámica de Weber a la de C. K. Thornhill [55]. Thornhill propuso una teoría cinética de la radiación electromagnética con un éter gaseoso compuesto por una variedad infinita de partículas, de manera que la frecuencia de las ondas electromagnéticas se correlaciona con la energía por unidad de masa de las partículas en lugar de sólo la energía, obteniendo la distribución de Planck de una forma mucho más simple.

La explicación estadística de la ley de Plank ya la conocemos, pero la transformación gaussiana de Priest demanda una explicación física para una estadística clásica. Mazilu hace mención expresa del dispositivo de medición empleado, en este caso el bolómetro, basado en un elemento de absorción —se dice que la función zeta de Riemann se corresponde con un espectro de absorción, no de emisión. Si hoy se emplean metamateriales para “ilustrar” variaciones del espacio tiempo y los agujeros negros —donde también se usa la función zeta para regularizar los cálculos-, con más razón y mucho más fundamento físico y teórico se podrían utilizar para estudiar variantes del espectro de absorción para poder reconstruir la razón por una suerte de ingeniería inversa. El enigma de la fórmula de Priest podría abordarse desde un punto de vista tanto teórico como práctico y constructivo —aunque también la explicación que se da del rendimiento de los metamateriales es más que discutible y habría que purgarla de numerosas asunciones.

Por supuesto para cuando Priest publicó su artículo la idea de cuantización ya tenía ganada la batalla. Su trabajo cayó en el olvido y del autor apenas se recuerda más que su dedicación a la colorimetría, en la que estableció un criterio de temperaturas recíprocas para la diferencia mínima en la percepción de colores [56]; se trata de temperaturas perceptivas, naturalmente, no físicas; la correspondencia entre temperaturas y colores no parece que pueda establecerse jamás. Si existe un álgebra elemental aditiva y sustractiva de los colores, también debe haber un álgebra producto, seguramente relacionada con su percepción. Esto hace pensar en la llamada línea de púrpuras no espectrales entre los extremos rojo y violeta del espectro, cuya percepción está limitada por la función de luminosidad. Con la debida correspondencia esto podría prestarse a una hermosa analogía que el lector puede intentar adivinar.

Por otra parte conviene no olvidar que la constante de Planck no tiene nada que ver con la incertidumbre en la energía de un fotón, aunque hoy sea una costumbre asociarlos [57]. Las vibraciones longitudinales en el interior de los cuerpos en movimiento de Noskov recuerdan de inmediato el concepto de zitterbewegung o “movimiento trémulo” introducido por Schrödinger para interpretar la interferencia de energía positiva y negativa en la ecuación relativista del electrón de Dirac. Schrödinger y Dirac concibieron este movimiento como “una circulación de carga” que generaba el momento magnético del electrón. La frecuencia de la rotación del zbw sería del orden de los 1021 hertzios, demasiado elevada para la detección salvo por resonancias.

David Hestenes ha analizado diversos aspectos del zitter en su modelo de la mecánica cuántica como autointeracción. P. Catillon et al. hicieron un experimento de canalización de electrones en un cristal en el 2008 para confirmar la hipótesis del reloj interno al electrón de de Broglie. La resonancia detectada experimentalmente es muy próxima a la frecuencia de de Broglie, que es la mitad de la frecuencia del zitter; el periodo de de Broglie estaría directamente asociado a la masa, tal como se ha sugerido recientemente. Existen diversos modelos hipotéticos para crear resonancias con el electrón reproduciendo la función zeta en cavidades y billares dinámicos como el de Artin, pero no suelen asociarse con el zitter ni con el reloj interno de de Broglie, puesto que este experimento no encuentra acomodo en la versión convencional de la mecánica cuántica. Por otro lado sería recomendable considerar una energía de punto cero totalmente clásica como puede seguirse del trabajo de Planck y sus continuadores en la electrodinámica estocástica, aunque todos estos modelos se basen en partículas puntuales. [58].

La matemática, se dice, es la reina de las ciencias, y la aritmética la reina de la matemática. El teorema fundamental de la aritmética pone en el centro a los números primos, cuyo producto permite generar todos los números enteros mayores que 1. El mayor problema de los números primos es su distribución, y la mejor aproximación a su distribución proviene de la función zeta de Riemann. Esta a su vez tiene un aspecto crítico, que es justamente averiguar si todos los ceros no triviales de la función yacen en la línea crítica. El tiempo y la competencia entre matemáticos ha agigantado la tarea de demostrar la hipótesis de Riemann, el K-1 de la matemática, que comportaría una especie de lucha del hombre contra el infinito.

William Clifford dijo que la geometría era la madre de todas las ciencias, y que uno debería entrar en ella agachado igual que los niños; parece por el contrario que la aritmética nos hace más altivos, porque no necesitamos mirar hacia abajo para contar. Y eso, mirar hacia abajo y hacia lo más elemental, sería lo mejor para la comprensión de este tema, olvidándose de la hipótesis tanto como fuera posible. Naturalmente, esto también podría decirse de innumerables cuestiones donde el sobreuso de la matemática crea un contexto demasiado enrarecido, pero al menos aquí se admite una falla básica en la comprensión, y en otras partes eso no parece importar demasiado.

Cabe decir que hay dos formas básicas de entender la función zeta de Riemann: como un problema que nos plantea el infinito o un problema que nos plantea la unidad. Hasta ahora la ciencia moderna, impulsada por la historia del cálculo, se ha ocupado mucho más del primer aspecto que del segundo, a pesar de que ambos estén unidos de manera indisociable.

Se dice que si se encontrara un cero fuera de la línea crítica —si la hipótesis de Riemann resultara falsa-, eso provocaría estragos en la teoría de los números. Pero si los primeros ceros que ya evaluó el matemático alemán están bien calculados, la hipótesis puede darse prácticamente por cierta, sin necesidad de calcular más trillones o cuatrillones de ellos. En realidad, y al hilo de lo dicho en el capítulo anterior, parece mucho más probable encontrar fallos en los fundamentos del cálculo y sus resultados que encontrar ceros fuera de la línea, y además el saludable caos creativo que produciría seguro que no quedaría confinado a una rama de las matemáticas.

Naturalmente, esto cabe aplicarlo al cálculo de la propia función zeta. Si el cálculo simplificado de Mathis, usando un criterio unitario de intervalo, encuentra divergencias incluso para los valores de la función logarítmica elemental, estas divergencias tendrían que ser mucho más importantes en un cálculo tan complicado como el de esta función especial. Y en cualquier caso nos brinda un criterio diferente en la evaluación de la función. Más aún, este nuevo criterio podría revelar si ciertas divergencias y términos de error se cancelan.

Los abogados del diablo en este caso no habrían hecho todavía la parte más importante de su trabajo. Por otra parte, también se han calculado derivadas fraccionales de esta función que permiten ver dónde convergen la parte real y la imaginaria; esto tiene interés tanto para el análisis complejo como para la física. De hecho se sabe que en los modelos físicos la evolución del sistema con respecto al polo y los ceros suele depender de la dimensión, que en muchos casos es fraccionaria o fractal, o incluso multi-fractal para los potenciales asociados con los números mismos.

La aritmética y el acto de contar existen primariamente en el dominio tiempo, y hay buenas razones para pensar que los métodos basados en diferencias finitas tendrían que tener preferencia al tratar de cambios en el dominio temporal —puesto que con infinitesimales se disuelve el acto de contar. El análisis fraccional de la función también debería estar referido a las secuencias temporales. Finalmente, la relación entre variables discretas y continuas característica de la mecánica cuántica también tendría que pasar por los métodos de diferencias finitas.

La física cuántica pude describirse de una forma más intuitiva con una combinación de álgebra geométrica y cálculo fraccional para los casos que contienen dominios intermedios. De hecho los dominios intermedios pueden ser mucho más numerosos de lo que creemos si se tiene en cuenta tanto la asignación mezclada de variables en la dinámica orbital como las diferentes escalas a las que pueden tener lugar ondas y vórtices entre el campo y las partículas en una perspectiva diferente como la de Venis. La misma autointeracción del zitterbewegung reclama todavía de una concreción mucho mayor de la lograda hasta ahora. Este movimiento permite, entre otras cosas, una traducción más directamente geométrica, e incluso clásica, de los aspectos no conmutativos de la mecánica cuántica, que a su vez permiten una conexión natural clave entre variables discretas y continuas.

Michel Riguidel somete a la función zeta a un trabajo intensivo de interacción para buscar un acercamiento morfogenético. Sería excelente si la potencia de cómputo de los ordenadores pudiera usarse para refinar nuestra intuición, interpretación y reflexión, en vez de lo contrario. Sin embargo aquí es fácil presentar dos grandes objeciones. Primero, la enorme plasticidad de la función, que aun siendo completamente diferenciable, según el teorema de universalidad de Voronin contiene cualquier cantidad de información un número infinito de veces.

La segunda objeción es que si ya la función tiene una enorme plasticidad, y por otro lado los gráficos sólo representan en todo momento aspectos muy parciales de la función, las deformaciones y transformaciones, por más evocadoras que puedan ser, aún introducen nuevos grados de arbitrariedad. Se puede transformar el logaritmo en una espiral a mitad de camino entre la línea y el círculo, y crear ondas espirales y qué no, pero no dejan de ser representaciones. El interés, en todo caso, está en la interacción función-sujeto-representación —la interacción entre herramientas matemáticas, conceptuales y de representación.

Pero no se necesitan más enrevesados conceptos. El mayor obstáculo para profundizar en este tema, como en tantos otros, reside en la frontal oposición a revisar los fundamentos del cálculo, la mecánica clásica y la cuántica. Por otro lado, cuanto más complejos sean los argumentos para demostrar o refutar la hipótesis, menos importancia puede tener el resultado para el mundo real, sea cierta o falsa.

Suele decirse que el significado de la hipótesis de Riemann es que los números primos tienen una distribución tan aleatoria como es posible, lo que por supuesto deja totalmente abierto cuánto azar es posible. Tal vez no tengamos más remedio que hablar de azar aparente.

Pero aún así, ahí lo tenemos: el máximo grado de azar aparente en una simple secuencia lineal generalizable a cualquier dimensión esconde una estructura ordenada de una insondable riqueza.

Michel Riguidel: Morphogenesis of the Zeta Function in the Critical Strip by Computational Approach
Michel Riguidel: Morphogenesis of the Zeta Function in the Critical Strip by Computational Approach


Volvamos ahora al aspecto cualitativo de la polaridad y a la problemática relación con el dominio cuantitativo. Pero no sólo la relación entre lo cualitativo y lo cuantitativo es problemática, sino que la misma interpretación cualitativa plantea un interrogante básico, que inevitablemente remite a las conexiones cuantitativas.

Para Venis todo puede explicarse con el yin y el yang, que él ve en términos de expansión y contracción, y de una dimensión más alta o una dimensión más baja. Aunque su interpretación ahonda mucho la posibilidad de conexión con la física y la matemática, supone una asunción básica de la acepción del yin y el yang del filósofo práctico japonés George Ohsawa. Se suele afirmar repetidamente que en la tradición china, el yin se relaciona básicamente con la contracción y el yang con la expansión. Venis conjetura que la interpretación china puede ser más metafísica y la de Ohsawa más física; y en otra ocasión opina que la primera podría estar más relacionada con los procesos microcíclicos de la materia y la segunda con los procesos mesocíclicos más propios de nuestra escala de observación, pero ambas consideraciones parecen bastante divergentes.

Cuesta creer que sin resolver estas diferencias tan básicas puedan alguna vez aplicarse estas categorías a aspectos cuantitativos, aunque aún puede hablarse de contracción y expansión, con y sin relación a las dimensiones. Pero por otro lado, cualquier reducción de categorías tan vastas y llenas de matices a meras relaciones lineales con coeficientes de aspectos aislados como “expansión” o “contracción” corre el peligro de convertirse en una enorme simplificación que anula precisamente el valor de lo cualitativo para apreciar grados y matices.

La lectura que Venis hace no es en absoluto superficial, y por el contrario es fácil ver que lo que hace es darle una dimensión mucho más amplia a estos términos, y nunca mejor dicho. Su extrapolación a aspectos como el calor y el color puede parecer falta de la deseable justificación cuantitativa y teórica, pero en cualquier caso son lógicas y consecuentes con su visión general y están abiertas a la profundización del tema. Sin embargo el radical desacuerdo en la cualificación más básica ya es todo un desafío para la interpretación.

Habría que decir para empezar que la versión china no puede reducirse de ningún modo al entendimiento del yin y el yang como contracción y expansión, ni tampoco a ningún par de opuestos conceptuales con exclusión de los demás. Contracción y expansión son sólo uno entre los muchos posibles, y aun siendo muy empleado, depende enteramente, como cualquier otro par, del contexto. Tal vez la acepción más común sea la de “lleno” y “vacío”, que por otra parte no deja de estar íntimamente ligada a la contracción y la expansión, aunque no sean ni mucho menos idénticos. O también, según el contexto, la tendencia a llenarse o a vaciarse; no es por nada que se distinga muy a menudo entre yang viejo y joven, y lo mismo para el yin. Estos puntos de espontánea inversión potencial también están expresados en el Taijitu, puesto que la inversión espontánea es el camino del Tao.

Por otra parte, cualidades como lo lleno y lo vacío no sólo tienen un significado claro en términos diferenciales y de las teorías de campos, la hidrodinámica o aun la termodinámica, sino que también tienen un sentido inmediato, aunque mucho más difuso, para nuestro sentido interno, o cenestesia, que es justamente el sentido común o sensorio común, que es justamente nuestra sensación indiferenciada anterior al impreciso “corte sensorial” que parece generar el campo de nuestros cinco sentidos. Esta cenestesia o sentido interno también incluye la cinestesia, nuestra percepción inmediata del movimiento y nuestra autopercepción, que puede ser tanto del cuerpo como de la misma conciencia.

Este sentido interno o sensorio es sólo otra forma de hablar del medio homogéneo e indiviso que ya somos, y es a él que se refiere siempre la percepción mediada por cualquiera de los sentidos. Y cualquier tipo de conocimiento intuitivo o cualitativo toma eso como referencia, que evidentemente va más allá de cualquier criterio racional o sensorial de discernimiento. Y a la inversa, podría decirse que ese trasfondo se obvia en el pensamiento formal pero se lo supone en el conocimiento intuitivo. Los físicos hablan a menudo de que un resultado es “contraintuitivo” sólo en el sentido de que va contra lo esperado o el conocimiento adquirido, no contra la intuición, que en vano querríamos definir.

Sería con todo absurdo decir que lo cualitativo y lo cuantitativo son esferas completamente separadas. Las matemáticas son cualitativas y cuantitativas por igual. Se habla de ramas más cualitativas, como la topología, y ramas más cuantitativas como la aritmética o el cálculo, pero una inspección más atenta revela que eso apenas tiene sentido. La morfología de Venis está totalmente basada en la idea de flujo y en nociones tan elementales como puntos de equilibrio y puntos de inversión. El mismo Newton llamó a su cálculo “método de fluxiones”, de cantidades en flujo continuo, y los métodos para evaluar curvas se basan en la identificación de puntos de inflexión. De modo que hay una compatibilidad que no sólo no es forzada sino que es verdaderamente natural; que la ciencia moderna haya avanzado en dirección contraria hacia la abstracción creciente, lo que a su vez es el justo contrapeso a su utilitarismo, es ya otra historia.

Polaridad y dualidad son cosas bien diferentes pero conviene percibir sus relaciones antes de que se introdujera la convención de la carga eléctrica. La referencia aquí no puede dejar de ser la teoría electromagnética, que es la teoría básica sobre la luz y la materia, y en buena medida también sobre el espacio y la materia.

Evidentemente, sería totalmente absurdo decir que una carga positiva es yang y una carga negativa es yin, puesto que entre ambos sólo hay un cambio de signo arbitrario. En el caso de un electrón o protón ya intervienen otros factores, como el hecho de que uno es mucho menos masivo que el otro, o que uno se encuentra en la periferia y el otro en el centro del átomo. Pongamos otro ejemplo. A nivel biológico y psicológico, vivimos entre la tensión y la presión, grandes condicionantes de nuestra forma de percibir las cosas. Pero sería absurdo también que uno u otro son yin o yang en la medida en que entendamos la tensión sólo como una presión negativa. Dicho de otro modo, los meros cambios de signo nos parecen enteramente triviales; pero se hacen mucho más interesantes cualitativa y cuantitativamente cuando comportan otras transformaciones.

Que todo sea trivial o nada lo sea, depende sólo de nuestro conocimiento y atención; un conocimiento superficial puede presentarnos como triviales cosas que en absoluto lo son y están llenas de contenido. La polaridad de la carga puede parecer trivial, lo mismo que la dualidad de la electricidad y el magnetismo, o la relación entre la energía cinética y potencial. En realidad ninguna de ellas es en absoluto trivial ni siquiera tomada por separado, pero cuando intentamos verlo todo junto tenemos ya un álgebra espacio-temporal con una enorme riqueza de variantes.

En el caso de la presión y la tensión, la transformación relevante es la deformación aparente de un material. Las variaciones de presión-tensión-deformación son, por ejemplo, las que definen las propiedades del pulso, ya sea en la pulsología de las medicinas tradicionales china o india como en el moderno análisis cuantitativo del pulso; pero eso también nos lleva a las relaciones tensión-deformación que define a la ley constitutiva en la ciencia de materiales. Las relaciones constitutivas, por otro lado, son el aspecto complementario de las ecuaciones del campo electromagnético de Maxwell que nos dicen cómo éste interactúa con la materia.

Se dice normalmente que electricidad y magnetismo, que se miden con unidades con dimensiones diferentes, son la expresión dual de una misma fuerza. Como ya hemos señalado, esta dualidad implica la relación espacio-materia, tanto para las ondas como para lo que se supone que es el soporte material de la polaridad eléctrica y magnética; de hecho, y sin entrar en más detalles, esta parece ser la distinción fundamental.

Todas las teorías de campos gauge pueden expresarse por fuerzas y potenciales pero también por variaciones de presión-tensión-deformación que en cualquier caso comportan un feedback. Y hay un feedback porque hay un balance global primero, y sólo luego uno local. Estas relaciones están presentes en la ley de Weber, sólo que en ella lo que se “deforma” es la fuerza en lugar de la materia. La gran virtud de la teoría de Maxwell es hacer explícita la dualidad entre electricidad y magnetismo que se oculta en la ecuación de Weber. Pero hay que insistir, con Nicolae Mazilu, que la esencia de la teoría gauge se puede encontrar ya en el problema de Kepler.

Ya vimos que relaciones constitutivas como la permitividad y la permeabilidad con sus magnitudes respectivas no pueden darse en el espacio vacío, por lo que sólo pueden ser un promedio estadístico de lo que ocurre en la materia y lo que ocurre en el espacio. La materia puede soportar tensión sin exhibir deformación, y el espacio puede deformarse sin tensión —esto está en paralelo con las signaturas básicas de la electricidad y el magnetismo, que son la tensión y la deformación. Deformación y tensión no son yin ni yang, pero ceder fácilmente a la deformación sí es yin, y soportar la tensión sin deformación es yang —al menos por lo que respecta al aspecto material. Entre ambos tiene que haber por supuesto todo un espectro continuo, a menudo interferido por otras consideraciones.

Sin embargo, desde el punto de vista del espacio, al que no accedemos directamente sino por la mediación de la luz, la consideración puede ser opuesta: la expansión sin coacción sería yang puro, mientras que la contracción puede ser una reacción de la materia ante la expansión del espacio, o de las radiaciones que lo atraviesan. Las mismas radiaciones u ondas son una forma alterna intermedia entre la contracción y la expansión, entre la materia y el espacio, que no pueden existir por separado. Con todo una deformación es un concepto puramente geométrico, mientras que una tensión o una fuerza no, siendo aquí donde empieza el dominio de la física propiamente dicha.

Sin embargo, desde el punto de vista del espacio, al que no accedemos directamente sino por la mediación de la luz, la consideración puede ser opuesta: la expansión sin coacción sería yang puro, mientras que la contracción puede ser una reacción de la materia ante la expansión del espacio, o de las radiaciones que lo atraviesan. Las mismas radiaciones u ondas son una forma alterna intermedia entre la contracción y la expansión, entre la materia y el espacio, que no pueden existir por separado. Con todo una deformación es un concepto puramente geométrico, mientras que una tensión o una fuerza no, siendo aquí donde empieza el dominio de la física propiamente dicha.

Tal vez así pueda vislumbrarse un criterio para conciliar ambas interpretaciones, no sin una atención cuidadosa al cuadro general del que forman parte; cada una puede tener su rango de aplicación, pero no pueden estar totalmente separadas.

Es ley del pensamiento que los conceptos aparezcan como pares de opuestos, habiendo una infinidad de ellos; encontrar su pertinencia en la naturaleza es ya otra cosa, y el problema parece hacerse insoluble cuando las ciencias cuantitativas introducen sus propios conceptos que también están sujetos a las antinomias pero de un orden a menudo muy diferente y desde luego mucho más especializado. Sin embargo la atención simultánea al conjunto y a los detalles hacen de esto una tarea que está lejos de ser imposible.

A menudo se ha hablado de holismo y reduccionismo para las ciencias pero hay que recordar que ninguna ciencia, empezando por la física, ha podido ser descrita en términos rigurosamente mecánicos. Los físicos se quedan con la aplicación local de los campos gauge, pero el mismo concepto del lagrangiano es integral o global, no local. Lo que sorprende es que aún no se haya aprovechado este carácter global en campos como la medicina, la biofísica o la biomecánica.

Partiendo de estos aspectos globales de la física es mucho más viable una conexión genuina y con sentido entre lo cualitativo y lo cuantitativo. La concepción del yin y el yang es sólo una de las muchas lecturas cualitativas que el hombre ha hecho de la naturaleza, pero aun teniendo en cuenta el carácter sumamente fluido de este tipo de distinciones no es difícil establecer las correspondencias. Por ejemplo, con las tres gunas del Samkya o los cuatro elementos y los cuatro humores de la tradición occidental, en que el fuego y el agua son los elementos extremos y el aire y la tierra los intermedios; también estos pueden verse en términos de contracción y expansión, o de presión, tensión y deformación.

Y por supuesto la idea de equilibrio tampoco es privativa de la concepción china, puesto que la misma cruz y el cuaternario han tenido siempre una connotación de equilibrio totalmente elemental y de carácter universal. Es más bien en la ciencia moderna que el equilibrio deja de tener un lugar central, a pesar de que tampoco en ella puede dejar de ser omnipresente, como lo es en el mismo razonamiento, la lógica y el álgebra. La misma posibilidad de contacto entre el conocimiento cuantitativo y cualitativo depende tanto de la ubicación que demos al concepto de equilibrio como de la apreciación del contexto y los rasgos genuinamente globales de lo que llamamos mecánica.

A diferencia de los conceptos científicos acostumbrados, que tienden inevitablemente a hacerse más detallados y a especializarse, nociones como el yin y el yang son ideas de la máxima generalidad, índices a identificar en los más concretos contextos; si queremos definirlas demasiado pierden la generalidad que les de su valor como guía intuitiva. Pero también las ideas más generales de la física han estado sujetas a constante evolución y modificación en función del contexto, y no hay más que ver las continuas transformaciones de conceptos cuantitativos como fuerza, energía o entropía, por no hablar de cuestiones como el criterio y rango de aplicación de los tres principios de la mecánica clásica.

Los vórtices pueden expresarse en el elegante lenguaje del continuo, de las compactas formas diferenciales exteriores o del álgebra geométrica; pero los vórtices hablan sobre todo con un lenguaje muy semejante al de nuestra propia imaginación y la plástica imaginación de la naturaleza. Por eso, cuando observamos la secuencia de Venis y sus variaciones, sabemos que nos encontramos en un terreno intermedio, pero genuino, entre la física matemática y la biología. Tanto en una como en otra la forma sigue a la función, pero en la ingeniería inversa de la naturaleza que toda ciencia humana es, la función debería seguir a la forma hasta las últimas consecuencias.

Venis habla repetidamente incluso de un equilibrio dimensional, es decir, un equilibrio entre las dimensiones entre las que se sitúa la evolución de un vórtice. Este amplía mucho el alcance del equilibrio pero hace más difícil contrastarlo. El cálculo fraccional tendría que ser clave para seguir esta evolución a través de los dominios intermedios entre dimensiones, pero esto también plantea aspectos interesantes para la medida experimental.

Cómo puedan interpretarse las dimensiones superiores a tres es siempre una cuestión abierta. Si en lugar de pensar en la materia como moviéndose en un espacio pasivo, pensamos en la materia como aquellas porciones a las que el espacio no tiene acceso, la misma materia partiría de una dimensión cero o puntual. Entonces las seis dimensiones de la evolución de los vórtices formarían un ciclo desde la emisión de luz por la materia al repliegue del espacio y la luz en la materia otra vez —y las tres dimensiones adicionales sólo serían el proceso en el sentido inverso, y desde una óptica inversa, lo que hace que se evite la repetición.

Es sólo una forma de ver algunos aspectos de la secuencia entre las muchas posibles, y el tema merece un estudio mucho más detallado que el que podemos dedicarle aquí. Una cosa es buscar algún tipo de simetría, debe haber muchos más tipos de vórtices de los que conocemos ahora, sin contar con las diferentes escalas en que pueden darse y las múltiples metamorfosis. Sólo en el trabajo de Venis puede encontrarse la debida introducción a estas cuestiones. Para Venis, aunque no haya manera de demostrarlo, el número de dimensiones es seguramente infinito. Un indicio de ello sería el número mínimo de meridianos necesarios para crear un vórtice, que aumenta exponencialmente con el numero de dimensiones y que el autor asocia con la serie de Fibonacci.

Puede hablarse de polaridad siempre que se aprecie una capacidad de autorregulación. Es decir, no cuando simplemente se cuenta con fuerzas aparentemente antagónicas, sino cuando no podemos dejar de advertir un principio por encima de ellas. Esa capacidad ha existido siempre desde el problema de Kepler, y es bien revelador que la ciencia no haya acertado a reconocerlo. La fuerza de Newton no es polar, la fuerza de Weber sí, pero el problema de los dos cuerpos exhibe una dinámica polar en cualquier caso. De hecho llamar “mecánica” a la evolución de los cuerpos celestes es sólo una racionalización, y en realidad no tenemos una explicación mecánica de nada cuando se habla de fuerzas fundamentales, ni probablemente podemos tenerla. Sólo cuando advertimos el principio regulador podemos usar el término dinámica haciendo honor a la intención original aún presente en tal nombre.