La manzana y el dragón

Por lo que sé, Nikolay Noskov fue el primero en apreciar, en los años 90 del pasado siglo, que la dinámica de Weber era hasta el momento la única que permitía dar cuenta de la forma de las elipses, incluso si no pretendían dar una «explicación mecánica» de su creación. A ese respecto, Noskov insistió particularmente en asociar los potenciales retardados con vibraciones longitudinales de los cuerpos en movimiento para darle un contenido a la conservación, meramente formal en Weber, de la energía; también insistió en que su ocurrencia penetraba todo tipo de fenómenos naturales, desde la estabilidad de los átomos y sus núcleos, al movimiento elíptico orbital, el sonido, la luz, el electromagnetismo, el flujo del agua o las ráfagas de viento [9].

A pesar de los malentendidos sobre el tema, estas ondas longitudinales no son incompatibles con la física conocida, y Noskov recordaba que la misma ecuación de onda de Schrödinger es una mezcla de ecuaciones diferentes que describen ondas en un medio y ondas dentro del cuerpo en movimiento —y lo mismo ocurrió desde el comienzo con las «ondas electromagnéticas» de Maxwell, que incluso desde el punto de vista más clásico no pueden ser otra cosa que un promedio estadístico entre lo que ocurre en porciones de espacio y de materia.

Fue también Noskov quien advirtió que el comportamiento de las fuerzas y potenciales en la ley de Weber habían entrañado desde siempre un feedback, aunque no parece haber percibido que esto es extensible a todas las teorías gauge, y, finalmente, incluso a la propia mecánica celeste newtoniana, si bien en todos estos casos se presenta disfrazada. Los átomos serían definitivamente «tontos» sin esta capacidad de ajuste incorporada en la misma idea del campo.

*

Volvamos ahora a la razón continua. Miles Williams Mathis se pregunta cómo es que, habida cuenta de la igualdad Φ2 + Φ = 1, no se ha relacionado phi con las más elementales leyes de cuadrados inversos de la física; más aún, se pregunta cómo es que no ha sido asociada con la propia esfera, siendo tan evidente que la superficie de una esfera también disminuye al cuadrado [10].

Podría argumentarse que la serie de Fibonacci no cae al cuadrado, pero el factor Φ sí, como puede visualizarse fácilmente en los cuadrados sucesivos de la espiral áurea (1, 1/Φ, 1/Φ2 , 1/Φ3 …) o en su expresión como raíz cuadrada continua. Mathis no está confundiendo el cuadrado inverso con la raíz cuadrada, sino que está hablando de un factor de escala entre dos hipotéticos subcampos el uno dentro del otro.

  Miles Mathis: More on the Golden Ratio and Fibonacci Series

Puede que Mathis esté en lo cierto al insistir en que la presencia de phi debe tener también una causa física subyacente; el único problema es que la física moderna ignora y niega por completo una relación de escala entre carga y gravedad, en verdad luz y gravedad, como el que propone. Sin embargo el origen de su correlación se encuentra en el mismísimo problema de la elipse de Kepler, en el que quiere ver una acción conjunta de dos campos diferentes, el segundo basado no sólo en el cuadrado inverso de la distancia sino también en una ley inversa a la cuarta potencia (1/ r4) con un producto de la densidad por el volumen, en lugar de la fórmula habitual de masas.

Ahora bien, Mathis es quien primero que ha hablado expresamente de la conflación de la velocidad orbital y el movimiento innato en Newton, interpretando el lagrangiano como el velado producto de dos campos, de efectos atractivo y repulsivo, cuya proporción o intensidad relativa está en función de la escala y densidad [11].

La inclusión de la densidad tendría que ser fundamental en una física verdaderamente relacional que siguiera el espíritu de Arquímedes, lo que nos lleva de vuelta al tema de las ondas y las espirales. Las espirales son una ocurrencia común en astronomía, siendo las galaxias su manifestación más aparente; estas galaxias han sido descritas en términos de ondas de densidad.

También en el Sistema Solar y la distribución de sus planetas se ha querido ver una espiral logarítmica con Φ como clave. Como en el caso de la llamada «ley», o más bien regla de Titus-Bode, la existencia de un orden no aleatorio parece bastante evidente, pero el ajuste fino de los valores dados resulta un tanto arbitrario.

No hay ni que decir que la elipse es la transformación del círculo cuando su centro se divide en dos focos; aunque desde el otro punto de vista bien puede decirse, y ello no carece de importancia, que el círculo es sólo el caso límite de la primera. Abundando en el problema de Kepler, aunque bajo otra luz, Nicolae Mazilu nos remite al teorema de Newton sobre las elipses giratorias en precesión. Newton ya había considerado cuidadosamente el caso de fuerzas decreciendo al cubo de la distancia, y en este caso hipotético los cuerpos describen órbitas en forma de espiral logarítmica, que por supuesto nadie ha observado.

Ahora bien, los trabajos de E. B. Wilson de 1919 y 1924 mostraban que las órbitas estables de los electrones en el átomo no eran elipses sino espirales logarítmicas; sólo que la fuerza implicada no es la fuerza de Coulomb, sino una fuerza de transición entre dos órbitas elípticas diferentes. La solución posterior del problema ha cubierto de olvido un modelo que también era consistente. Y como para todas las aplicaciones de las secciones cónicas a la física, también aquí se encuentra esa signatura de cambio en el potencial, el desplazamiento en la polarización o plano de fase conocido como fase geométrica, descubierta por Pancharatnam y generalizada con tanto éxito a la mecánica cuántica por Berry [12] .

Jan Boeyens: Commensurability in the Solar System

Diversos estudios han mostrado que la distribución de los planetas del Sistema Solar sigue la pauta de una espiral logarítmica áurea con una precisión de más del 97 por ciento, que puede aumentar si se tienen en cuenta los años siderales y periodos sinódicos del sistema en su conjunto [13]. Para Hartmut Müller, la proximidad se debería simplemente a la cercanía de phi al valor de √e, que es 1,648. Según otros recuentos que no he verificado, el promedio de la distancia entre planetas consecutivos desde el Sol a Plutón, tomando la distancia entre los dos anteriores como unidad, es justamente 1,618. Si se descarta este último planeta la media se desvía ampliamente, lo que da una idea de la fragilidad de estas calibraciones.

Se ha dicho a menudo que la armonía perceptible en el Sistema Solar no es posible sin algún mecanismo de feedback, mientras que el acercamiento newtoniano combina sin más una fuerza a distancia con trayectorias como las balas de cañón, dependientes de fuerzas externas o colisiones. Sin embargo ya hemos visto que incluso en el caso newtoniano se esconde una autointeracción al fundir en uno solo el movimiento innato y la velocidad orbital.

La mecánica celeste da paso a una versión más abstracta, la mecánica lagrangiana, para evitar este embrollo; la diferencia entre la energía cinética y la potencial se remiten a las llamadas «condiciones iniciales», pero estas no son otra cosa que el movimiento innato de Newton… el caso es que esta diferencia promedio del lagrangiano y la excentricidad promedio de las órbitas es del mismo orden de magnitud que las desviaciones de la distribución del sistema solar obtenidas por la espiral logarítmica áurea. Así pues, se puede tomar la densidad lagrangiana del sistema entero y sus promedios y ver cómo van encajando en ella los planetas con sus órbitas.

Parece ser que las publicaciones científicas han dejado de admitir estudios sobre la distribución planetaria, puesto que, al no tener una física subyacente, quedan relegados al limbo de la especulación numerológica. Sin embargo el lagrangiano usado rutinariamente en mecánica celeste tampoco es nada más que una pura analogía matemática, y existe sólo para difuminar diferencias del mismo orden de magnitud. Basta con admitir esto para darse cuenta de que en realidad no nos movemos en terrenos diferentes.

Admitirlo es admitir también que la gravedad es de suyo una fuerza de ajuste que depende del entorno y no una constante universal, pero esto es algo que ya está implícito en la mecánica relacional de Weber.

La teoría de Mathis, es más específica en el sentido de que contempla G como una transformación entre dos radios. No se ha ocupado de encajar sus propias nociones de la física subyacente a la Sección Áurea en la espiral del Sistema Solar, pero si ha tratado en detalle la Ley de Bode de forma mucho más simple basándose en una serie basada en √2, además de incluir naturalmente en ella la equivalencia óptica, el desatendido hecho de que muchos planetas vienen a tener el mismo tamaño desde el Sol, del mismo modo que muchos satélites tienen el mismo tamaño que el Sol vistos desde sus respectivos planetas. No se trata por tanto de una mera coincidencia puntual [13]. La equivalencia óptica sería el guiño final que nos dedica la Naturaleza para ver quién es más ciega, si ella o nosotros.

Y ya que parece una típica travesura de la Naturaleza, aquí vamos a permitirnos una pequeña diversión numerológica. La equivalencia óptica que se pone de manifiesto en los eclipses totales es una relación angular y proyectiva (con un valor aproximado de 1/720 de la esfera celeste) en concordancia con el número 108, tan importante en diferentes tradiciones, y que implica el número de diámetros solares que hay entre el Sol y la Tierra, el número de diámetros terrestres en el diámetro del Sol y el número de diámetros lunares que separa a la Luna de la Tierra.

En el pentagrama que sirve para construir una espiral áurea —y con el que también puede determinarse unívocamente una elipse en geometría esférica- vemos que los ángulos recíprocos del pentágono y la estrella son 108 y 72 grados. Por otra parte, el mismo Mathis comenta, sin relacionarlo para nada con la equivalencia óptica, que en los aceleradores la masa relativista de un protón suele encontrar un límite de 108 unidades que ni la Relatividad ni la mecánica cuántica explican, y hace una derivación del famoso factor gamma que lo vincula directamente con G.

Por supuesto, el factor relativista de Lorentz coincide con la mecánica de Weber hasta un cierto límite de energía —aunque en la segunda lo que aumenta es la propia energía interna y no la masa. No podría haber conexión más natural con la equivalencia óptica que la de la propia luz, y la teoría de Mathis establece una serie de ecuaciones e identidades entre la luz y la carga, la carga y la masa, y la masa con la gravedad.

Por el otro lado, si tiráramos una piedra en un pozo que perforara la Tierra de lado a lado, y esperáramos a que volviera igual que un muelle o un péndulo, tardaría unos 84 minutos, lo mismo que un objeto en una órbita cerrada. Si hiciéramos lo mismo con una partícula de polvo en un asteroide del tamaño de una manzana, pero de la misma densidad que nuestro planeta, el resultado sería exactamente el mismo. Este hecho, que parece asignar un papel importante a la densidad sobre la propia masa y la distancia, traspasa la apariencia del fenómeno gravitatorio, y debería resultarnos tan pasmoso como la comprobación de Galileo de que los objetos caen a la misma velocidad independientemente de su peso; también encaja muy bien en el contexto de una espiral igual a todas las escalas.

En cualquier caso el lagrangiano, la diferencia entre energía cinética y potencial, tiene que desempeñar un papel fundamental como referencia para el ajuste fino de los distintos elementos del Sistema Solar. En mecánica celeste, a pesar de lo que se diga, la integral siempre ha conducido al diferencial, y no al contrario. Como ya dijimos la ley descubierta por Newton no produce la elipse sino que aspira a encajar en ella.

Así pues tenemos la manzana de Newton y el Áureo Dragón de la Espiral del Sistema Solar. ¿Se tragará el Dragón a la Manzana? La respuesta es que no necesita tragársela, puesto que desde el principio ha estado dentro de él. Repitámoslo de nuevo: los campos gauge, caracterizados por la invariancia del lagrangiano bajo transformaciones, equivalen a un feedback no trivial entre la fuerza y el potencial, que a su vez se confunde con el eterno «problema de la información», a saber, cómo sabe la Luna dónde está el Sol y cómo «conoce» su masa para comportarse como se comporta. ¿Por qué se pregunta por el problema de la información al nivel de las partículas y se ignora donde puede verse a simple vista para empezar?

Considerando los ajustes del lagrangiano con respecto a un sistema descrito exclusivamente por fuerzas no variables, el entero Sistema Solar parece una enorme holonomía espiral.

El lagrangiano también puede esconder tasas virtuales de disipación —virtuales, claro, pues que las órbitas se conservan es algo que ya sabemos. De hecho lo que Lagrange hizo fue diluir el principio de trabajo virtual de D’Alembert introduciendo coordenadas generalizadas. Pero estamos tan acostumbrados a separar los formalismos de la termodinámica de los de los sistemas reversibles, supuestamente más fundamentales, que cuesta ver lo que esto significa. Sin embargo, el instinto más cierto nos dice que todo lo reversible no es sino pura ilusión, y los comportamientos reversibles, meras islas rodeadas por un océano sin formas. No hay movimiento sin irreversibilidad; pretender lo contrario es una quimera.

Mario J. Pinheiro ha querido reparar ese divorcio entre convicciones y formalismos proponiendo una reformulación de la mecánica alternativa a la mecánica lagrangiana, con un principio variacional para sistemas rotatorios fuera de equilibrio y un tiempo mecánico-termodinámico en un conjunto de dos ecuaciones diferenciales de primer orden. Aquí el equilibrio se da entre la variación mínima de energía y la producción máxima de entropía.

Esta termomecánica permite describir consistentemente sistemas con unas características bien diferentes de las de los sistemas reversibles, particularmente relevantes para el caso que nos ocupa: los subsistemas dentro de un sistema más grande pueden amortiguar las fuerzas que se ejercen sobre ello, y en lugar de estar esclavizados queda espacio para la interacción y la autorregulación. Puede haber un componente de torsión topológica y conversión de movimiento lineal o angular en movimiento angular. El momento angular sirve de amortiguador para disipar las perturbaciones, «un mecanismo de compensación bien conocido en biomecánica y robótica» [15] .

Hasta donde sé, la propuesta de Pinheiro de una mecánica irreversible es la única que da una explicación apropiada del famoso experimento de Newton del cubo de agua y el torbellino formado por su rotación, por el transporte de momento angular, frente a la interpretación absoluta de Newton o la puramente relacional de Leibniz, ninguna de las cuales hace verdaderamente al caso. Baste para ello recordar la observación elemental de que en este experimento la aparición del vórtice requiere tanto tiempo como fricción, y la materia es transferida a las regiones de mayor presión, signo claro de la Segunda Ley. Lo extraordinario es que no se haya insistido en esto antes de Pinheiro —algo que sólo puede explicarse por los papeles convenidos de antemano para las distintas ramas de la física. Por lo demás salta a la vista que muelles, torbellinos y espirales son las formas idóneas y más eficientes para la amortiguación.

Tal vez sea oportuno recordar que el llamado «principio de máxima entropía» no tiende hacia el máximo desorden, como muy a menudo se piensa incluso dentro del mundo de la física, sino más bien hacia lo contrario, y así es como lo entendió originalmente Clausius [16]. Esto establece un vínculo muy amplio pero esencial con el mundo de los sistemas más altamente organizados, a cuya cabeza solemos poner a los seres vivos. Por lo demás, basta con detenerse a contemplarlo un momento para comprender que una espiral como la del Sistema Solar sólo tiene sentido como proceso irreversible y en producción permanente.

El concepto de orden que introdujo Boltzmann no es menos subjetivo que el de armonía, siendo la principal diferencia que en la mecánica estadística los microestados, que no los macroestados, han recibido una más o menos adecuada cuantificación. Claro que no deja de ser otra grandiosa racionalización: la irreversibilidad de los fenómenos o macroprocesos se derivaría de la reversibilidad de los microprocesos. Pero la mera postulación de órbitas estacionarias en los átomos —pretender que pueda haber fuerzas variables en sistemas aislados- es ilegal tanto desde el punto de vista termodinámico como desde el mero sentido común.

El principio variacional propuesto por Pinheiro fue sugerido por primera vez por Landau y Lifshitz pero no ha tenido desarrollo hasta el día de hoy. Esto recuerda inevitablemente la idea de los pozos de amortiguación de la teoría de Landau y Zener, que surgen de la transferencia adiabática de par de torsión al cruzarse ondas sin interferencia destructiva. Richard Merrick ha relacionado directamente estos pozos o vórtices con las espirales áureas en condiciones de resonancia [17]. Muchos dirán que no se ve cómo pueden satisfacerse esas condiciones en el Sistema Solar, pero, una vez más, las resonancias de la teoría clásica de perturbaciones en la mecánica celeste de Laplace no se encuentran en mejor situación, no siendo otra cosa que puras relaciones matemáticas. Podría en todo caso decirse que están en peor situación, puesto que se nos pide que creamos que la gravedad puede tener un efecto repulsivo.

Richard Merrick: Harmonic formation helps explain why phi pervades the solar system

Aunque la termomecánica de Pinheiro conlleva algo similar a esta forma de transferencia, que evoca el transporte paralelo de la fase geométrica, incorpora además un término para la energía libre termodinámica, y esta es la diferencia capital. Un sistema reversible es un sistema cerrado, y no hay sistemas cerrados en el universo.

La propia teoría de la interferencia armónica de Merrick se vería elevada a un nivel mucho más alto de generalidad con sólo apreciar que el principio de máxima producción de entropía no es contrario a la generación de armonía sino más bien conducente a ella.

El principio de máxima producción de entropía se puede trasladar a la mecánica cuántica sin apenas más sacrificio que el la idea de la reversibilidad, como ha mostrado la termodinámica cuántica de Gian Paolo Beretta, Hatsopoulos y Gyftopoulos; el tema es de extraordinaria importancia pero ahora nos llevaría demasiado lejos [18].

*

Los físicos se precian mucho del alto grado de precisión de algunas de sus teorías, lo que es harto comprensible habida cuenta de los trabajos que se toman en llevar adelante sus cálculos, en algunas ocasiones hasta diez y doce cifras decimales. Pocas cosas serían más elocuentes que tal precisión si llegara de forma natural, sin asunciones especiales ni arbitrarios ajustes ad hoc, pero en realidad ese suele ser el caso la mayoría de las veces. Aún no se puede medir el valor de la gravedad en la Tierra con más de tres cifras decimales, pero se pretenden hacer cálculos con diez o doce cifras hasta los confines del universo.

En el caso de Lagrange y Laplace esto es absolutamente evidente, y algún día nos preguntaremos cómo hemos podido aceptar sus métodos sin ni siquiera pestañear. Lo cierto es que esos procedimientos no se digirieron de la noche a la mañana, pero si finalmente se dieron por buenos fue precisamente por el deseo mismo de expandir más y más el dominio del cálculo, todo ello dentro de la idea, heredada de Newton y Leibniz, de que la Naturaleza no era sino una maquinaria de relojería de una precisión virtualmente infinita. Y para los medios qué mejor que servir al Ideal.

Con razón se ha dicho que si Kepler hubiera tenido datos más precisos, no hubiera avanzado su teoría del movimiento elíptico; y en verdad, los óvalos de Cassini, curvas de cuarto grado con un producto de las distancias constante, parecen reproducir las trayectorias observables con mejor aproximación, lo que habría que atribuir a las perturbaciones. Estos óvalos plantean además interesantes y profundas cuestiones sobre la conexión dinámica entre elipses e hipérbolas. Curiosamente, los óvalos de Cassini se utilizan para modelar la geometría de la curvatura negativa espontánea de los glóbulos rojos, en los que también se ha encontrado la proporción áurea [19].

Como nota Mathis, los primeros análisis de perturbaciones incluían, ya desde Newton y Clairaut, un factor 1/ r4 con una fuerza repulsiva, lo que muestra hasta qué punto los elementos «auxiliares» de la mecánica celeste están escondiendo algo mucho más importante [20].

Para la mirada del naturalista, acostumbrado a la muy variable precisión de las ciencias descriptivas, la espiral del Sistema Solar tendría que aparecer como el más espléndido ejemplo de ordenamiento natural; un orden tan magnífico que, a diferencia del de Laplace, puede incluir en su seno catástrofes sin apenas desdibujarse. Esta es una característica que atribuimos invariablemente a los seres vivos. Ya se juzgue como fenómeno natural o como organismo, teniendo todo en cuenta, la espiral muestra una precisión, más que suficiente, excelente.

¿Y cuál es el lugar del Taijitu, nuestro símbolo del Polo generador del Yin y el Yang, en todo esto? Bueno, ni que decir tiene que el sistema del que estamos hablando, junto con sus subsistemas —planetas y satélites- es un proceso eminentemente polar, con unos ejes que definen su evolución; y que también lo es la holonomía espiral que los envuelve. Y en cuanto al Yin y el Yang, si dijéramos que también pueden ser la energía cinética y la potencial, se nos diría que estamos proponiendo una correspondencia demasiado trivial. Pero lo ya apuntado debería servir para ver que no es el caso.

Sabemos que en las órbitas la energía cinética y la potencial ni siquiera se compensan, y cuando debieran hacerlo, como en el caso del movimiento circular en la ecuación de Binet, ni siquiera obtenemos una fuerza única —se requiere al menos una diferencia entre el centro del círculo y el de la fuerza. Buscando el argumento más simple posible, lo primero que viene a la mente es que la emergencia de la sección áurea en el Taijitu, el vórtice esférico en libre rotación, encierra una suerte de síntesis, analógica y a priori, de 1) una ley de áreas aplicada a las dos energías, 2) la geometría focal de las elipses, y 3) una diferencia integrable y un giro o cambio en el plano de polarización que no lo es. Este tercer punto solapa el lagrangiano y una fase geométrica que en principio parecen cosas bien diferentes.

Por supuesto, aquí dejamos grandes cabos sueltos que un diagrama tan simple no puede traducir. Para empezar, que una elipse tenga en su interior dos focos no significa que haya que buscar el origen de las fuerzas que la determinan en su interior, y esto nos llevaría a la teoría de perturbaciones. Pero cualquier influencia ambiental, incluida la de otros planetas, debería estar ya incluida en la fase geométrica.

Si pasáramos por un momento de la dinámica orbital a la luz, podríamos reinterpretar en clave de los potenciales retardados y su incidencia en la fase los datos de la elipsometría o el «monopolo abstracto con una fuerza de —1/2 en el centro de la esfera de Poincaré» al que apela Berry en su generalización de la fase geométrica. Ahora bien, conviene no olvidar que la luz era ya un problema esencialmente estadístico incluso desde los tiempos de Stokes y de Verdet. Grado de polarización y entropía de un haz de luz fueron siempre conceptos equivalentes, aunque aún estemos lejos de extraer todas las consecuencias de ello.

Damos por supuesta la coincidencia del potencial retardado y la fase geométrica, aunque ni siquiera existe una literatura específica sobre el tema, como tampoco hay acuerdo, por lo demás, en torno a la significación y estatus de la propia fase geométrica. No han faltado quienes la han visto como un efecto del intercambio de momento angular, y, en cualquier caso, en mecánica clásica la fase geométrica se pone de manifiesto con la formulación de Hamilton-Jacobi de variables de ángulo y acción [21].

Si armonía es totalidad, la llamada fase geométrica tendría que tener su parte en la matemática de la armonía, puesto que aquella no es sino la expresión de un «cambio global sin cambio local». Ya notamos que la fase geométrica es inherente a campos que involucran secciones cónicas, así que su inclusión aquí es completamente elemental. Ahora bien, el que no implique a las fuerzas de interacción reconocidas no significa que se trate de meras «fuerzas ficticias»; se trata de fuerzas reales que transportan momento angular y resultan esenciales en la configuración efectiva del sistema.

Puesto que este transporte de energía es un fenómeno de interferencia, la energía potencial del lagrangiano ha de comprender la suma de todas las interferencias de los sistemas adyacentes, siendo este el «mecanismo de regulación». Puede aducirse que en el curso de los planetas no observamos la manifestación de interferencias que caracteriza a los procesos ondulatorios, a pesar de que no se dude en recurrir a «resonancias» para explicar perturbaciones. Veamos esto un poco más de cerca.

Si hasta ahora se ha querido ver la fase geométrica, en mecánica clásica la diferencia en el ángulo sólido o ángulo de Hannay, como una propiedad relacional, la forma más adecuada de entenderla tendría que ser dentro de una mecánica puramente relacional como la ya mencionada de Weber. Ahora bien, como ya notó Poincaré, si tenemos que multiplicar la velocidad al cuadrado ya no tenemos forma de distinguir entre la energía cinética y la potencial, e incluso éstas dejan de ser independientes de la energía interna de los cuerpos considerados. De aquí la postulación de una vibración interna por Noskov. Empero, esta ambigüedad inherente no impide hacer cálculos tan precisos como con las ecuaciones de Maxwell, además de tener otras obvias ventajas.

Recuérdese la comparación de la piedra que atraviesa la Tierra y la partícula de polvo en su diminuto asteroide, que vuelven al mismo punto en el mismo tiempo. En un medio hipotético de densidad homogénea, esto sugeriría un efecto de amortiguación y sincronización conjuntos y a distintas escalas espaciales. Pero, sin necesidad de hipótesis alguna, lo que la fase geométrica implica es el acoplamiento efectivo de sistemas que evolucionan a diferentes escalas temporales, por ejemplo, los electrones y los núcleos, o fuerzas gravitatorias y atómicas, o, dentro de la misma gravedad, las interacciones entre los distintos planetas. Esto la hace particularmente robusta al ruido o las perturbaciones.

La ambigüedad de la mecánica relacional no tiene por qué ser una debilidad, sino que podría estarnos revelando ciertas limitaciones inherentes a la mecánica y su cálculo. Justo cuando queremos llevar a su extremo lógico el ideal de convertir la física en una pura cinemática, una ciencia de fuerzas y movimientos, de mera extensión, es cuando se revela su inevitable dependencia de los potenciales y de factores considerados «no locales», aunque más bien tendríamos que hablar de configuraciones globales definidas.

Lo esencial en la comparación, aparentemente casual, entre el Taijitu y la órbita elíptica es que ésta última también es una expresión íntegra de la totalidad: no sólo de las fuerzas internas sino también de fuerzas externas que contribuyen contemporáneamente a su forma. Si el mecanismo de compensación sirve de regulación efectiva no puede afectar sólo a los potenciales sino igualmente a las fuerzas.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *