La razón continua, la estadística y la probabilidad

Se dice desde hace algún tiempo que en la ciencia de hoy “la correlación reemplaza a la causación”, y por correlación se entiende evidentemente una correlación estadística. Pero ya desde Newton la física no se ha preocupado demasiado por la causación, ni podía hacerlo, así que no se trata tanto de un cambio radical como de un incremento progresivo en la complejidad de las variables.

En el manejo de distribuciones y frecuencias estadísticas apenas tiene sentido hablar de teorías falsas o correctas, sino más bien de modelos que se ajustan peor o mejor a los datos, lo que dota a esta área de mucha mayor libertad y flexibilidad con respecto a los supuestos. Las teorías físicas pueden ser innecesariamente restrictivas, y por el contrario una interpretación estadística es siempre demasiado poco vinculante; pero por otro lado, la física moderna está cada vez más saturada de aspectos probabilísticos, así que la interacción entre ambas disciplinas es cada vez estrecha en ambas direcciones.

Las cosas aún se ponen más interesante si introducimos la posibilidad de que el principio de máxima producción entropía esté presente en las ecuaciones fundamentales, tanto de la mecánica clásica como de la mecánica cuántica —y ya no digamos si se descubriesen relaciones básicas entre este principio y la proporción continua φ.

Tal vez el modelo de onda refleja/potencial retardado que hemos visto para el sistema circulatorio nos da una buena idea de un círculo virtuoso correlación/causación que cumple sobradamente con las exigencias de la mecánica pero deja en suspenso el sentido de la secuencia causa-efecto. A falta de construir esos vínculos más sólidos e internos, ahora nos contentaremos con mencionar algunas asociaciones más circunstanciales entre nuestra constante y las distribuciones de probabilidad.

La primera asociación de la media áurea con la probabilidad, la combinatoria, la distribución binomial y la hipergeométrica viene ya sugerida por la presencia de las series de Fibonacci en el triángulo polar ya comentado.

Cuando hablamos de probabilidad en la naturaleza o en las ciencias sociales dos distribuciones nos vienen ante todo a la cabeza: la casi ubicua distribución normal o gaussiana, en forma de campana, y las distribuciones de leyes de potencias, también conocidas como distribuciones de Zipf, de Pareto, o zeta para los casos discretos.

El ya citado Richard Merrick ha hablado de una “función de interferencia armónica” resultado de la amortiguación de armónicos, o dicho de otro modo, del cuadrado de las primeras doce frecuencias de la serie armónica partido por las frecuencias de los primeros doce números de Fibonacci. Se trataría, según su autor, de un equilibrio entre la resonancia espacial y la amortiguación temporal.

De este modo llega a lo que llama un “modelo simétrico de interferencia reflexiva”, formado de la media armónica entre un círculo y una espiral. Merrick insiste en la trascendental importancia que tiene para toda la vida su organización en torno a un eje, lo que ya Vladimir Vernadsky había considerado como el problema clave de la biología.

Richard Merrick, Harmonically guided evolution

Las ideas de Merrick sobre umbrales de máxima resonancia y máxima amortiguación pueden ponerse en concordancia con las ecuaciones de termomecánica de Pinheiro, y como ya hemos notado tendrían más alcance si contemplaran el principio de máxima entropía como conducente a la organización en lugar de lo contrario. Merrick elabora también una cierta teoría musical sobre una proporción privilegiada 5/6-10/12 a diferentes niveles, desde la organización del torso humano a la disposición de la doble hélice de DNA vista como la rotación de un dodecaedro en torno a un eje bipolar.

*

Las leyes de potencias y distribuciones zeta son igualmente importantes en la naturaleza y los acontecimientos humanos, y se presentan tanto en leyes de física fundamentales hasta la distribución de la riqueza entre la población, el tamaño de las ciudades o la frecuencia de los terremotos. Ferrer i Cancho y Fernández notan que φ es el valor en el que coinciden los exponentes de la distribución de probabilidad de una magnitud discreta y el del valor de la magnitud frente a su rango. De momento no se sabe si esto es una curiosidad o permitirá profundizar en el conocimiento de estas distribuciones [37].

Las distribuciones zeta o de Zipf están ligadas a las estructuras jerárquicas y a los acontecimientos catastróficos, y también se solapan con los fractales en el dominio espacial y con el llamado ruido 1/f en el dominio de los procesos temporales. A. Z. Mekjian hace un estudio mucho más generalizado de la aplicación de los números de Fibonacci-Lucas a la estadística que incluyen leyes de potencias hiperbólicas [38] .

I. Tanackov et al. muestran la estrecha relación de la distribución exponencial elemental con el valor 2ln φ, que les hace pensar que la aparición de de la proporción continua en la Naturaleza podría estar ligada a un caso especial de procesos de Markov —un caso no reversible, diríamos nosotros. Sabido es que las distribuciones exponenciales tienen máxima entropía. Con los números de Lucas, generalización de los de Fibonacci, se puede obtener una convergencia al valor de e mucho más rápida que con la misma expresión original de Bernouilli, lo que ya da en qué pensar; también con paseos no reversibles se puede obtener una convergencia más rápida que con el paseo aleatorio habitual [38bis].

Edward Soroko propuso una ley de armonía estructural para la estabilidad de los sistemas autoorganizados, basado en la razón continua y sus series considerando la entropía desde el punto de vista del equilibrio termodinámico [39]. Sin duda una parte de su trabajo es aprovechable o puede ser fuente de nuevas ideas, aunque aquí hemos hablado más de entropía en sistemas alejados del equilibrio.

Sería de gran interés precisar más las relaciones de las leyes de potencias con la entropía. El uso del principio de máxima entropía parece especialmente indicado para sistemas abiertos fuera de equilibrio y con alta autointeracción. Investigadores como Matt Visser piensan que el principio de máxima entropía entendido en el sentido de Jaynes permiten una interpretación muy directa y natural de las leyes de potencias [40].

Normalmente se buscan leyes de potencias discretas o leyes de potencias continuas, pero en la naturaleza se aprecia a menudo un término medio entre ambas como observa Mitchell Newberry a propósito del sistema circulatorio. Como casi siempre, en tales casos se impone la ingeniería inversa sobre el modelo natural. La proporción continua y sus series nos ofrecen un procedimiento recursivo óptimo para pasar de escalas continuas a discretas, y su aparición en este contexto podría ser natural [41].

El promedio logarítmico parece ser el componente más importante de estas leyes de potencias, y la base de los logaritmos naturales, el número e, lo asociamos de inmediato con el crecimiento exponencial en el que una determinada variable aumenta sin restricciones, algo que en la naturaleza sólo puede aparecer en breves lapsos de corta duración. En cambio la proporción continua parece surgir en un contexto de equilibrio crítico entre al menos dos variables. Pero esto nos llevaría más bien a las curvas logísticas o en S, que son una forma modificada de la distribución normal y también una compensación a escala de una función tangente hiperbólica. Por otro lado las distribuciones exponenciales y las de leyes de potencias parecen muy diferentes pero a veces pueden estar directamente conectadas, lo que merecería un estudio por sí solo.

Como ya se apuntó, también podemos conectar las constantes e y Φ a través del plano complejo, como en la igualdad (Φi = e ± πi/3). Aunque la entropía siempre se ha medido con álgebras de números reales, G. Rotundo y M. Ausloos han mostrado que también aquí el uso de valores complejos puede estar justificado, permitiendo tratar no sólo una energía libre “básica” sino también “correcciones debidas a alguna estructura de escala subyacente”[42]. El uso de matrices de correlación asimétricas tal vez pueda conectarse con las matrices áureas generalizadas por Stakhov y que Sergey Pethoukov ha aplicado a la información del código genético [43].

En el contexto mecánico-estadístico la máxima entropía es sólo un extremo referido al límite termodinámico y a escalas de recurrencia de Poincaré inmensurables; pero en muchos casos relevantes en la naturaleza, y evidentemente en el contexto termomecánico, hay que considerar una entropía de equilibrio no máxima, que puede estar definida por el grano grueso del sistema. Pérez-Cárdenas et al. demuestran una entropía de grano grueso no máxima unida a una ley de potencias, siendo la entropía tanto menor cuando más fina es la granulosidad del sistema [44]. Esta granulosidad se puede vincular con las constantes de proporcionalidad en las ecuaciones de la mecánica, como la propia constante de Planck.

*

La probabilidad es un concepto predictivo, y la estadística uno descriptivo e interpretativo, y ambos deberían estar equilibrados si no queremos que el ser humano esté cada vez más gobernado por conceptos que no entiende en absoluto.

Por poner un ejemplo, el grupo de renormalización de la física estadística tiene cada vez más importancia en el manejo de datos de los filtros multinivel del aprendizaje automático, hasta el punto en que hoy hay quien afirma que ambas son la misma cosa. Pero no hay ni que decir que este grupo surgió históricamente para compensar los efectos de la autointeracción del lagrangiano en el campo electromagnético, un tema central de este artículo.

Para la predicción, los efectos de la autointeracción son más que nada “patológicos”, puesto que complican los cálculos y conducen a menudo a infinitos —aunque la culpa de esto está en la incapacidad de tratar con partículas extensa de la relatividad especial, más que en la propia autointeracción. Pero para la descripción e interpretación el problema es el inverso, se trata de recuperar la continuidad de una realimentación natural rota por capas y más capas de reglas de cálculo, con sus convenciones y arbitrariedades. La conclusión no puede ser más clara: la búsqueda de predicciones, y la “inteligencia artificial” así concebida, ha crecido exponencialmente a costa de ignorar la inteligencia natural —la capacidad intrínseca de autocorrección en la naturaleza.

Si queremos revertir de alguna manera que el hombre sea gobernado por números que no entiende —y hasta los especialistas los entienden cada vez menos-, se impone ocuparse del camino regresivo o retrodictivo con al menos igual intensidad. Si los dioses destruyen a los hombres volviéndolos ciegos, los hacen ciegos por medio de las predicciones.

*

Como apunta Merrick, para la actual teoría de la evolución, si la vida desapareciera de este planeta o tuviera que empezar otra vez de cero, los resultados a largo plazo serían completamente diferentes, y si surgiera una especie racional sería biológicamente inconmensurable con el hombre. Eso es lo que comporta una evolución aleatoria. En una evolución armónicamente guiada por resonancia e interferencia como la que él contempla, los resultados volverían a ser más o menos los mismos, salvo por la incierta incidencia que puedan tener los grandes ciclos cósmicos más allá de nuestro alcance.

No existe azar puro, no hay nada puramente aleatorio; a poco organizada que sea una entidad, así sea una partícula o átomo, no puede dejar de filtrar el azar circundante según su propia estructura interna. Y el primer signo de organización es la aparición de un eje de simetría, que en las partículas viene definido por ejes de rotación.

La teoría de la evolución dominante, como la cosmología, ha surgido para llenar el gran vacío entre unas leyes físicas abstractas y reversibles, y por lo tanto ajenas al tiempo, y el mundo ordinario de la flecha del tiempo, las formas perceptibles y las secuencias de acontecimientos. La entera cosmología actual parte de un supuesto innecesario y contradictorio, el principio de inercia. La teoría biológica de la evolución, de uno falso, que la vida sólo está gobernada por el azar.

La presente “teoría sintética” de la evolución sólo ha llegado a existir por la separación de disciplinas, y en particular, por la segregación de la termodinámica de la física fundamental a pesar de que nada hay más fundamental que la Segunda Ley. No es casual que la termodinámica surgiera simultáneamente a la teoría de la evolución: la primera empieza con Mayer, de consideraciones sobre el trabajo y la fisiología, y la segunda con Wallace y Darwin partiendo, según la cándida admisión de éste último en las primeras páginas de su obra principal, de los supuestos de competencia de Malthus, que a su vez se retrotraen a Hobbes —una es una teoría del trabajo y la otra del ecosistema global entendido como un mercado de capital. En este ecosistema el capital acumulado es, por supuesto, la herencia biológica.

La evolución armónica de Merrick, por la interferencia colectiva de las partículas-ondas, es una puesta al día de una idea tan vieja como la música; y es además una visión sin finalidad y atemporal del acontecer del mundo. Pero para alcanzar la deseada profundidad en el tiempo, debe estar unida a los otros dos dominios claramente teleológicos, pero espontáneos, presentes en la mecánica y la termodinámica, y que aquí llamamos termomecánicos para abreviar.

Bastaría unir estos tres elementos para que la presente teoría de la evolución empezara a resultar irrelevante; y eso sin hablar de que la evolución humana y tecnológica es decididamente lamarckiana más allá de cualquier especulación. Hasta las moléculas de DNA están organizadas de la forma más manifiesta por un eje. Y en cuanto a la teoría de la información, sólo hay que recordar que ha salido de una interpretación peculiar de la termodinámica, y que es imposible hacer cómputos automáticos sin componentes con un eje de giro. Sea cual sea el grado de azar, el polo define su sentido.

Sin embargo, para entender mejor la acción del polo y la reacción espontánea que comporta la mecánica tendríamos que redescubrir la polaridad.

La manzana y el dragón

Por lo que sé, Nikolay Noskov fue el primero en apreciar, en los años 90 del pasado siglo, que la dinámica de Weber era hasta el momento la única que permitía dar cuenta de la forma de las elipses, incluso si no pretendían dar una “explicación mecánica” de su creación. A ese respecto, Noskov insistió particularmente en asociar los potenciales retardados con vibraciones longitudinales de los cuerpos en movimiento para darle un contenido a la conservación, meramente formal en Weber, de la energía; también insistió en que su ocurrencia penetraba todo tipo de fenómenos naturales, desde la estabilidad de los átomos y sus núcleos, al movimiento elíptico orbital, el sonido, la luz, el electromagnetismo, el flujo del agua o las ráfagas de viento [9].

A pesar de los malentendidos sobre el tema, estas ondas longitudinales no son incompatibles con la física conocida, y Noskov recordaba que la misma ecuación de onda de Schrödinger es una mezcla de ecuaciones diferentes que describen ondas en un medio y ondas dentro del cuerpo en movimiento —y lo mismo ocurrió desde el comienzo con las “ondas electromagnéticas” de Maxwell, que incluso desde el punto de vista más clásico no pueden ser otra cosa que un promedio estadístico entre lo que ocurre en porciones de espacio y de materia.

Fue también Noskov quien advirtió que el comportamiento de las fuerzas y potenciales en la ley de Weber habían entrañado desde siempre un feedback, aunque no parece haber percibido que esto es extensible a todas las teorías gauge, y, finalmente, incluso a la propia mecánica celeste newtoniana, si bien en todos estos casos se presenta disfrazada. Los átomos serían definitivamente “tontos” sin esta capacidad de ajuste incorporada en la misma idea del campo.

*

Volvamos ahora a la razón continua. Miles Williams Mathis se pregunta cómo es que, habida cuenta de la igualdad Φ2 + Φ = 1, no se ha relacionado phi con las más elementales leyes de cuadrados inversos de la física; más aún, se pregunta cómo es que no ha sido asociada con la propia esfera, siendo tan evidente que la superficie de una esfera también disminuye al cuadrado [10].

Podría argumentarse que la serie de Fibonacci no cae al cuadrado, pero el factor Φ sí, como puede visualizarse fácilmente en los cuadrados sucesivos de la espiral áurea (1, 1/Φ, 1/Φ2 , 1/Φ3 …) o en su expresión como raíz cuadrada continua. Mathis no está confundiendo el cuadrado inverso con la raíz cuadrada, sino que está hablando de un factor de escala entre dos hipotéticos subcampos el uno dentro del otro.

  Miles Mathis: More on the Golden Ratio and Fibonacci Series

Puede que Mathis esté en lo cierto al insistir en que la presencia de phi debe tener también una causa física subyacente; el único problema es que la física moderna ignora y niega por completo una relación de escala entre carga y gravedad, en verdad luz y gravedad, como el que propone. Sin embargo el origen de su correlación se encuentra en el mismísimo problema de la elipse de Kepler, en el que quiere ver una acción conjunta de dos campos diferentes, el segundo basado no sólo en el cuadrado inverso de la distancia sino también en una ley inversa a la cuarta potencia (1/ r4) con un producto de la densidad por el volumen, en lugar de la fórmula habitual de masas.

Ahora bien, Mathis es quien primero que ha hablado expresamente de la conflación de la velocidad orbital y el movimiento innato en Newton, interpretando el lagrangiano como el velado producto de dos campos, de efectos atractivo y repulsivo, cuya proporción o intensidad relativa está en función de la escala y densidad [11].

La inclusión de la densidad tendría que ser fundamental en una física verdaderamente relacional que siguiera el espíritu de Arquímedes, lo que nos lleva de vuelta al tema de las ondas y las espirales. Las espirales son una ocurrencia común en astronomía, siendo las galaxias su manifestación más aparente; estas galaxias han sido descritas en términos de ondas de densidad.

También en el Sistema Solar y la distribución de sus planetas se ha querido ver una espiral logarítmica con Φ como clave. Como en el caso de la llamada “ley”, o más bien regla de Titus-Bode, la existencia de un orden no aleatorio parece bastante evidente, pero el ajuste fino de los valores dados resulta un tanto arbitrario.

No hay ni que decir que la elipse es la transformación del círculo cuando su centro se divide en dos focos; aunque desde el otro punto de vista bien puede decirse, y ello no carece de importancia, que el círculo es sólo el caso límite de la primera. Abundando en el problema de Kepler, aunque bajo otra luz, Nicolae Mazilu nos remite al teorema de Newton sobre las elipses giratorias en precesión. Newton ya había considerado cuidadosamente el caso de fuerzas decreciendo al cubo de la distancia, y en este caso hipotético los cuerpos describen órbitas en forma de espiral logarítmica, que por supuesto nadie ha observado.

Ahora bien, los trabajos de E. B. Wilson de 1919 y 1924 mostraban que las órbitas estables de los electrones en el átomo no eran elipses sino espirales logarítmicas; sólo que la fuerza implicada no es la fuerza de Coulomb, sino una fuerza de transición entre dos órbitas elípticas diferentes. La solución posterior del problema ha cubierto de olvido un modelo que también era consistente. Y como para todas las aplicaciones de las secciones cónicas a la física, también aquí se encuentra esa signatura de cambio en el potencial, el desplazamiento en la polarización o plano de fase conocido como fase geométrica, descubierta por Pancharatnam y generalizada con tanto éxito a la mecánica cuántica por Berry [12] .

Jan Boeyens: Commensurability in the Solar System

Diversos estudios han mostrado que la distribución de los planetas del Sistema Solar sigue la pauta de una espiral logarítmica áurea con una precisión de más del 97 por ciento, que puede aumentar si se tienen en cuenta los años siderales y periodos sinódicos del sistema en su conjunto [13]. Para Hartmut Müller, la proximidad se debería simplemente a la cercanía de phi al valor de √e, que es 1,648. Según otros recuentos que no he verificado, el promedio de la distancia entre planetas consecutivos desde el Sol a Plutón, tomando la distancia entre los dos anteriores como unidad, es justamente 1,618. Si se descarta este último planeta la media se desvía ampliamente, lo que da una idea de la fragilidad de estas calibraciones.

Se ha dicho a menudo que la armonía perceptible en el Sistema Solar no es posible sin algún mecanismo de feedback, mientras que el acercamiento newtoniano combina sin más una fuerza a distancia con trayectorias como las balas de cañón, dependientes de fuerzas externas o colisiones. Sin embargo ya hemos visto que incluso en el caso newtoniano se esconde una autointeracción al fundir en uno solo el movimiento innato y la velocidad orbital.

La mecánica celeste da paso a una versión más abstracta, la mecánica lagrangiana, para evitar este embrollo; la diferencia entre la energía cinética y la potencial se remiten a las llamadas “condiciones iniciales”, pero estas no son otra cosa que el movimiento innato de Newton… el caso es que esta diferencia promedio del lagrangiano y la excentricidad promedio de las órbitas es del mismo orden de magnitud que las desviaciones de la distribución del sistema solar obtenidas por la espiral logarítmica áurea. Así pues, se puede tomar la densidad lagrangiana del sistema entero y sus promedios y ver cómo van encajando en ella los planetas con sus órbitas.

Parece ser que las publicaciones científicas han dejado de admitir estudios sobre la distribución planetaria, puesto que, al no tener una física subyacente, quedan relegados al limbo de la especulación numerológica. Sin embargo el lagrangiano usado rutinariamente en mecánica celeste tampoco es nada más que una pura analogía matemática, y existe sólo para difuminar diferencias del mismo orden de magnitud. Basta con admitir esto para darse cuenta de que en realidad no nos movemos en terrenos diferentes.

Admitirlo es admitir también que la gravedad es de suyo una fuerza de ajuste que depende del entorno y no una constante universal, pero esto es algo que ya está implícito en la mecánica relacional de Weber.

La teoría de Mathis, es más específica en el sentido de que contempla G como una transformación entre dos radios. No se ha ocupado de encajar sus propias nociones de la física subyacente a la Sección Áurea en la espiral del Sistema Solar, pero si ha tratado en detalle la Ley de Bode de forma mucho más simple basándose en una serie basada en √2, además de incluir naturalmente en ella la equivalencia óptica, el desatendido hecho de que muchos planetas vienen a tener el mismo tamaño desde el Sol, del mismo modo que muchos satélites tienen el mismo tamaño que el Sol vistos desde sus respectivos planetas. No se trata por tanto de una mera coincidencia puntual [13]. La equivalencia óptica sería el guiño final que nos dedica la Naturaleza para ver quién es más ciega, si ella o nosotros.

Y ya que parece una típica travesura de la Naturaleza, aquí vamos a permitirnos una pequeña diversión numerológica. La equivalencia óptica que se pone de manifiesto en los eclipses totales es una relación angular y proyectiva (con un valor aproximado de 1/720 de la esfera celeste) en concordancia con el número 108, tan importante en diferentes tradiciones, y que implica el número de diámetros solares que hay entre el Sol y la Tierra, el número de diámetros terrestres en el diámetro del Sol y el número de diámetros lunares que separa a la Luna de la Tierra.

En el pentagrama que sirve para construir una espiral áurea —y con el que también puede determinarse unívocamente una elipse en geometría esférica- vemos que los ángulos recíprocos del pentágono y la estrella son 108 y 72 grados. Por otra parte, el mismo Mathis comenta, sin relacionarlo para nada con la equivalencia óptica, que en los aceleradores la masa relativista de un protón suele encontrar un límite de 108 unidades que ni la Relatividad ni la mecánica cuántica explican, y hace una derivación del famoso factor gamma que lo vincula directamente con G.

Por supuesto, el factor relativista de Lorentz coincide con la mecánica de Weber hasta un cierto límite de energía —aunque en la segunda lo que aumenta es la propia energía interna y no la masa. No podría haber conexión más natural con la equivalencia óptica que la de la propia luz, y la teoría de Mathis establece una serie de ecuaciones e identidades entre la luz y la carga, la carga y la masa, y la masa con la gravedad.

Por el otro lado, si tiráramos una piedra en un pozo que perforara la Tierra de lado a lado, y esperáramos a que volviera igual que un muelle o un péndulo, tardaría unos 84 minutos, lo mismo que un objeto en una órbita cerrada. Si hiciéramos lo mismo con una partícula de polvo en un asteroide del tamaño de una manzana, pero de la misma densidad que nuestro planeta, el resultado sería exactamente el mismo. Este hecho, que parece asignar un papel importante a la densidad sobre la propia masa y la distancia, traspasa la apariencia del fenómeno gravitatorio, y debería resultarnos tan pasmoso como la comprobación de Galileo de que los objetos caen a la misma velocidad independientemente de su peso; también encaja muy bien en el contexto de una espiral igual a todas las escalas.

En cualquier caso el lagrangiano, la diferencia entre energía cinética y potencial, tiene que desempeñar un papel fundamental como referencia para el ajuste fino de los distintos elementos del Sistema Solar. En mecánica celeste, a pesar de lo que se diga, la integral siempre ha conducido al diferencial, y no al contrario. Como ya dijimos la ley descubierta por Newton no produce la elipse sino que aspira a encajar en ella.

Así pues tenemos la manzana de Newton y el Áureo Dragón de la Espiral del Sistema Solar. ¿Se tragará el Dragón a la Manzana? La respuesta es que no necesita tragársela, puesto que desde el principio ha estado dentro de él. Repitámoslo de nuevo: los campos gauge, caracterizados por la invariancia del lagrangiano bajo transformaciones, equivalen a un feedback no trivial entre la fuerza y el potencial, que a su vez se confunde con el eterno “problema de la información”, a saber, cómo sabe la Luna dónde está el Sol y cómo “conoce” su masa para comportarse como se comporta. ¿Por qué se pregunta por el problema de la información al nivel de las partículas y se ignora donde puede verse a simple vista para empezar?

Considerando los ajustes del lagrangiano con respecto a un sistema descrito exclusivamente por fuerzas no variables, el entero Sistema Solar parece una enorme holonomía espiral.

El lagrangiano también puede esconder tasas virtuales de disipación —virtuales, claro, pues que las órbitas se conservan es algo que ya sabemos. De hecho lo que Lagrange hizo fue diluir el principio de trabajo virtual de D’Alembert introduciendo coordenadas generalizadas. Pero estamos tan acostumbrados a separar los formalismos de la termodinámica de los de los sistemas reversibles, supuestamente más fundamentales, que cuesta ver lo que esto significa. Sin embargo, el instinto más cierto nos dice que todo lo reversible no es sino pura ilusión, y los comportamientos reversibles, meras islas rodeadas por un océano sin formas. No hay movimiento sin irreversibilidad; pretender lo contrario es una quimera.

Mario J. Pinheiro ha querido reparar ese divorcio entre convicciones y formalismos proponiendo una reformulación de la mecánica alternativa a la mecánica lagrangiana, con un principio variacional para sistemas rotatorios fuera de equilibrio y un tiempo mecánico-termodinámico en un conjunto de dos ecuaciones diferenciales de primer orden. Aquí el equilibrio se da entre la variación mínima de energía y la producción máxima de entropía.

Esta termomecánica permite describir consistentemente sistemas con unas características bien diferentes de las de los sistemas reversibles, particularmente relevantes para el caso que nos ocupa: los subsistemas dentro de un sistema más grande pueden amortiguar las fuerzas que se ejercen sobre ello, y en lugar de estar esclavizados queda espacio para la interacción y la autorregulación. Puede haber un componente de torsión topológica y conversión de movimiento lineal o angular en movimiento angular. El momento angular sirve de amortiguador para disipar las perturbaciones, “un mecanismo de compensación bien conocido en biomecánica y robótica” [15] .

Hasta donde sé, la propuesta de Pinheiro de una mecánica irreversible es la única que da una explicación apropiada del famoso experimento de Newton del cubo de agua y el torbellino formado por su rotación, por el transporte de momento angular, frente a la interpretación absoluta de Newton o la puramente relacional de Leibniz, ninguna de las cuales hace verdaderamente al caso. Baste para ello recordar la observación elemental de que en este experimento la aparición del vórtice requiere tanto tiempo como fricción, y la materia es transferida a las regiones de mayor presión, signo claro de la Segunda Ley. Lo extraordinario es que no se haya insistido en esto antes de Pinheiro —algo que sólo puede explicarse por los papeles convenidos de antemano para las distintas ramas de la física. Por lo demás salta a la vista que muelles, torbellinos y espirales son las formas idóneas y más eficientes para la amortiguación.

Tal vez sea oportuno recordar que el llamado “principio de máxima entropía” no tiende hacia el máximo desorden, como muy a menudo se piensa incluso dentro del mundo de la física, sino más bien hacia lo contrario, y así es como lo entendió originalmente Clausius [16]. Esto establece un vínculo muy amplio pero esencial con el mundo de los sistemas más altamente organizados, a cuya cabeza solemos poner a los seres vivos. Por lo demás, basta con detenerse a contemplarlo un momento para comprender que una espiral como la del Sistema Solar sólo tiene sentido como proceso irreversible y en producción permanente.

El concepto de orden que introdujo Boltzmann no es menos subjetivo que el de armonía, siendo la principal diferencia que en la mecánica estadística los microestados, que no los macroestados, han recibido una más o menos adecuada cuantificación. Claro que no deja de ser otra grandiosa racionalización: la irreversibilidad de los fenómenos o macroprocesos se derivaría de la reversibilidad de los microprocesos. Pero la mera postulación de órbitas estacionarias en los átomos —pretender que pueda haber fuerzas variables en sistemas aislados- es ilegal tanto desde el punto de vista termodinámico como desde el mero sentido común.

El principio variacional propuesto por Pinheiro fue sugerido por primera vez por Landau y Lifshitz pero no ha tenido desarrollo hasta el día de hoy. Esto recuerda inevitablemente la idea de los pozos de amortiguación de la teoría de Landau y Zener, que surgen de la transferencia adiabática de par de torsión al cruzarse ondas sin interferencia destructiva. Richard Merrick ha relacionado directamente estos pozos o vórtices con las espirales áureas en condiciones de resonancia [17]. Muchos dirán que no se ve cómo pueden satisfacerse esas condiciones en el Sistema Solar, pero, una vez más, las resonancias de la teoría clásica de perturbaciones en la mecánica celeste de Laplace no se encuentran en mejor situación, no siendo otra cosa que puras relaciones matemáticas. Podría en todo caso decirse que están en peor situación, puesto que se nos pide que creamos que la gravedad puede tener un efecto repulsivo.

Richard Merrick: Harmonic formation helps explain why phi pervades the solar system

Aunque la termomecánica de Pinheiro conlleva algo similar a esta forma de transferencia, que evoca el transporte paralelo de la fase geométrica, incorpora además un término para la energía libre termodinámica, y esta es la diferencia capital. Un sistema reversible es un sistema cerrado, y no hay sistemas cerrados en el universo.

La propia teoría de la interferencia armónica de Merrick se vería elevada a un nivel mucho más alto de generalidad con sólo apreciar que el principio de máxima producción de entropía no es contrario a la generación de armonía sino más bien conducente a ella.

El principio de máxima producción de entropía se puede trasladar a la mecánica cuántica sin apenas más sacrificio que el la idea de la reversibilidad, como ha mostrado la termodinámica cuántica de Gian Paolo Beretta, Hatsopoulos y Gyftopoulos; el tema es de extraordinaria importancia pero ahora nos llevaría demasiado lejos [18].

*

Los físicos se precian mucho del alto grado de precisión de algunas de sus teorías, lo que es harto comprensible habida cuenta de los trabajos que se toman en llevar adelante sus cálculos, en algunas ocasiones hasta diez y doce cifras decimales. Pocas cosas serían más elocuentes que tal precisión si llegara de forma natural, sin asunciones especiales ni arbitrarios ajustes ad hoc, pero en realidad ese suele ser el caso la mayoría de las veces. Aún no se puede medir el valor de la gravedad en la Tierra con más de tres cifras decimales, pero se pretenden hacer cálculos con diez o doce cifras hasta los confines del universo.

En el caso de Lagrange y Laplace esto es absolutamente evidente, y algún día nos preguntaremos cómo hemos podido aceptar sus métodos sin ni siquiera pestañear. Lo cierto es que esos procedimientos no se digirieron de la noche a la mañana, pero si finalmente se dieron por buenos fue precisamente por el deseo mismo de expandir más y más el dominio del cálculo, todo ello dentro de la idea, heredada de Newton y Leibniz, de que la Naturaleza no era sino una maquinaria de relojería de una precisión virtualmente infinita. Y para los medios qué mejor que servir al Ideal.

Con razón se ha dicho que si Kepler hubiera tenido datos más precisos, no hubiera avanzado su teoría del movimiento elíptico; y en verdad, los óvalos de Cassini, curvas de cuarto grado con un producto de las distancias constante, parecen reproducir las trayectorias observables con mejor aproximación, lo que habría que atribuir a las perturbaciones. Estos óvalos plantean además interesantes y profundas cuestiones sobre la conexión dinámica entre elipses e hipérbolas. Curiosamente, los óvalos de Cassini se utilizan para modelar la geometría de la curvatura negativa espontánea de los glóbulos rojos, en los que también se ha encontrado la proporción áurea [19].

Como nota Mathis, los primeros análisis de perturbaciones incluían, ya desde Newton y Clairaut, un factor 1/ r4 con una fuerza repulsiva, lo que muestra hasta qué punto los elementos “auxiliares” de la mecánica celeste están escondiendo algo mucho más importante [20].

Para la mirada del naturalista, acostumbrado a la muy variable precisión de las ciencias descriptivas, la espiral del Sistema Solar tendría que aparecer como el más espléndido ejemplo de ordenamiento natural; un orden tan magnífico que, a diferencia del de Laplace, puede incluir en su seno catástrofes sin apenas desdibujarse. Esta es una característica que atribuimos invariablemente a los seres vivos. Ya se juzgue como fenómeno natural o como organismo, teniendo todo en cuenta, la espiral muestra una precisión, más que suficiente, excelente.

¿Y cuál es el lugar del Taijitu, nuestro símbolo del Polo generador del Yin y el Yang, en todo esto? Bueno, ni que decir tiene que el sistema del que estamos hablando, junto con sus subsistemas —planetas y satélites- es un proceso eminentemente polar, con unos ejes que definen su evolución; y que también lo es la holonomía espiral que los envuelve. Y en cuanto al Yin y el Yang, si dijéramos que también pueden ser la energía cinética y la potencial, se nos diría que estamos proponiendo una correspondencia demasiado trivial. Pero lo ya apuntado debería servir para ver que no es el caso.

Sabemos que en las órbitas la energía cinética y la potencial ni siquiera se compensan, y cuando debieran hacerlo, como en el caso del movimiento circular en la ecuación de Binet, ni siquiera obtenemos una fuerza única —se requiere al menos una diferencia entre el centro del círculo y el de la fuerza. Buscando el argumento más simple posible, lo primero que viene a la mente es que la emergencia de la sección áurea en el Taijitu, el vórtice esférico en libre rotación, encierra una suerte de síntesis, analógica y a priori, de 1) una ley de áreas aplicada a las dos energías, 2) la geometría focal de las elipses, y 3) una diferencia integrable y un giro o cambio en el plano de polarización que no lo es. Este tercer punto solapa el lagrangiano y una fase geométrica que en principio parecen cosas bien diferentes.

Por supuesto, aquí dejamos grandes cabos sueltos que un diagrama tan simple no puede traducir. Para empezar, que una elipse tenga en su interior dos focos no significa que haya que buscar el origen de las fuerzas que la determinan en su interior, y esto nos llevaría a la teoría de perturbaciones. Pero cualquier influencia ambiental, incluida la de otros planetas, debería estar ya incluida en la fase geométrica.

Si pasáramos por un momento de la dinámica orbital a la luz, podríamos reinterpretar en clave de los potenciales retardados y su incidencia en la fase los datos de la elipsometría o el “monopolo abstracto con una fuerza de —1/2 en el centro de la esfera de Poincaré” al que apela Berry en su generalización de la fase geométrica. Ahora bien, conviene no olvidar que la luz era ya un problema esencialmente estadístico incluso desde los tiempos de Stokes y de Verdet. Grado de polarización y entropía de un haz de luz fueron siempre conceptos equivalentes, aunque aún estemos lejos de extraer todas las consecuencias de ello.

Damos por supuesta la coincidencia del potencial retardado y la fase geométrica, aunque ni siquiera existe una literatura específica sobre el tema, como tampoco hay acuerdo, por lo demás, en torno a la significación y estatus de la propia fase geométrica. No han faltado quienes la han visto como un efecto del intercambio de momento angular, y, en cualquier caso, en mecánica clásica la fase geométrica se pone de manifiesto con la formulación de Hamilton-Jacobi de variables de ángulo y acción [21].

Si armonía es totalidad, la llamada fase geométrica tendría que tener su parte en la matemática de la armonía, puesto que aquella no es sino la expresión de un “cambio global sin cambio local”. Ya notamos que la fase geométrica es inherente a campos que involucran secciones cónicas, así que su inclusión aquí es completamente elemental. Ahora bien, el que no implique a las fuerzas de interacción reconocidas no significa que se trate de meras “fuerzas ficticias”; se trata de fuerzas reales que transportan momento angular y resultan esenciales en la configuración efectiva del sistema.

Puesto que este transporte de energía es un fenómeno de interferencia, la energía potencial del lagrangiano ha de comprender la suma de todas las interferencias de los sistemas adyacentes, siendo este el “mecanismo de regulación”. Puede aducirse que en el curso de los planetas no observamos la manifestación de interferencias que caracteriza a los procesos ondulatorios, a pesar de que no se dude en recurrir a “resonancias” para explicar perturbaciones. Veamos esto un poco más de cerca.

Si hasta ahora se ha querido ver la fase geométrica, en mecánica clásica la diferencia en el ángulo sólido o ángulo de Hannay, como una propiedad relacional, la forma más adecuada de entenderla tendría que ser dentro de una mecánica puramente relacional como la ya mencionada de Weber. Ahora bien, como ya notó Poincaré, si tenemos que multiplicar la velocidad al cuadrado ya no tenemos forma de distinguir entre la energía cinética y la potencial, e incluso éstas dejan de ser independientes de la energía interna de los cuerpos considerados. De aquí la postulación de una vibración interna por Noskov. Empero, esta ambigüedad inherente no impide hacer cálculos tan precisos como con las ecuaciones de Maxwell, además de tener otras obvias ventajas.

Recuérdese la comparación de la piedra que atraviesa la Tierra y la partícula de polvo en su diminuto asteroide, que vuelven al mismo punto en el mismo tiempo. En un medio hipotético de densidad homogénea, esto sugeriría un efecto de amortiguación y sincronización conjuntos y a distintas escalas espaciales. Pero, sin necesidad de hipótesis alguna, lo que la fase geométrica implica es el acoplamiento efectivo de sistemas que evolucionan a diferentes escalas temporales, por ejemplo, los electrones y los núcleos, o fuerzas gravitatorias y atómicas, o, dentro de la misma gravedad, las interacciones entre los distintos planetas. Esto la hace particularmente robusta al ruido o las perturbaciones.

La ambigüedad de la mecánica relacional no tiene por qué ser una debilidad, sino que podría estarnos revelando ciertas limitaciones inherentes a la mecánica y su cálculo. Justo cuando queremos llevar a su extremo lógico el ideal de convertir la física en una pura cinemática, una ciencia de fuerzas y movimientos, de mera extensión, es cuando se revela su inevitable dependencia de los potenciales y de factores considerados “no locales”, aunque más bien tendríamos que hablar de configuraciones globales definidas.

Lo esencial en la comparación, aparentemente casual, entre el Taijitu y la órbita elíptica es que ésta última también es una expresión íntegra de la totalidad: no sólo de las fuerzas internas sino también de fuerzas externas que contribuyen contemporáneamente a su forma. Si el mecanismo de compensación sirve de regulación efectiva no puede afectar sólo a los potenciales sino igualmente a las fuerzas.

Dos tipos de reciprocidad

El Taijitu, emblema de la acción del Polo con respecto al mundo, y de la acción recíproca con respecto al Polo, recuerda inevitablemente, además, a la figura más universal de la física; nos estamos refiriendo naturalmente a la elipse —o más bien, habría que decir, a la idea de generación de una elipse, con su barrido de áreas y dos focos, puesto que aquí no existe ninguna excentricidad. La elipse aparece en las órbitas de los planetas no menos que en las órbitas atómicas de los electrones, y en el estudio de las propiedades de refracción de la luz da lugar a todo un campo de análisis, la elipsometría. El viejo problema de Kepler tiene invariancia de escala, y juega un papel determinante en todo nuestro conocimiento de la física desde la constante de Planck a las más lejanas galaxias.

En física, el principio de reciprocidad por excelencia es el tercer principio de la mecánica de Newton de acción y reacción, que está en el origen de todas nuestras ideas sobre la conservación de la energía y nos permite, por así decir, “interrogar” a las fuerzas cuando estamos obligados a suponer la constancia o proporcionalidad de otras cantidades. El tercer principio no habla de dos fuerzas diferentes sino de dos aspectos diferentes de la misma fuerza.

Ahora bien, la historia del tercer principio es curiosa, porque es casi obligado pensar que Newton lo estableció como clave de arco de su sistema para atar los cabos sueltos de la mecánica celeste —en particular en el problema de Kepler- antes que para la mecánica terrestre basada en el contacto directo entre los cuerpos. El tercer principio permite definir un sistema cerrado, y a los sistemas cerrados se ha referido toda la física fundamental desde entonces —sin embargo, es justamente en las órbitas celestes, como la de la Tierra entorno al Sol, donde menos puede verificarse este principio, puesto que el cuerpo central no está en el centro, sino en uno sólo de los focos. La fuerza designada por los vectores tendría que actuar sobre espacios vacíos.

Desde el primer momento se argumentó en el continente que la teoría de Newton era más un ejercicio de geometría que de física, aunque lo cierto es que, si la física y los vectores valían para algo, lo primero que fallaba era la geometría. Es decir, si suponemos que las fuerzas parten de y actúan sobre centros de masas, en lugar de meros puntos matemáticos. Pero, a pesar de lo que nos dice la intuición —que una elipse asimétrica sólo puede proceder de una fuerza variable, o bien de una generación simultánea desde los dos focos-, el deseo de expandir el dominio del cálculo se impuso sobre las dudas.

De hecho el tema ha permanecido tan ambiguo que siempre se ha intentado racionalizar con argumentos diferentes, ya sea el baricentro del sistema, ya sea la variación de la velocidad orbital, ya sea las condiciones iniciales del sistema. Pero ninguno de ellos por separado, ni la combinación de los tres, permite resolver el tema satisfactoriamente.

Puesto que nadie quiere pensar que los vectores están sometidos a un quantitative easing, y se alargan y acortan a conveniencia, o que el planeta acelera y se frena oportunamente por su propia cuenta como una nave autopropulsada, con el fin de mantener cerrada la órbita, se ha terminado finalmente por aceptar la combinación en una sola de la velocidad orbital variable y el movimiento innato. Pero ocurre que si la fuerza centrípeta contrarresta la velocidad orbital, y esta velocidad orbital es variable a pesar de que el movimiento innato es invariable, la velocidad orbital es ya de hecho un resultado de la interacción entre la fuerza centrípeta y la innata, con lo que entonces la fuerza centrípeta también está actuando sobre sí misma. Por lo tanto, y descontadas las otras opciones, se trata de un caso de feedback o autointeracción del sistema entero en su conjunto.

Así pues, habrá que decir que la afirmación de que la teoría de Newton explica la forma de las elipses, es, como mucho, un recurso pedagógico. Sin embargo esta pedagogía nos ha hecho olvidar que no son nuestra leyes las que determinan o “predicen” los fenómenos que observamos, sino que a lo sumo intentan encajar en ellos. Comprender la diferencia nos ayudaría a encontrar nuestro lugar en el panorama general.

La reciprocidad del tercer principio de Newton es simplemente inversa, por cambio de signo: a la fuerza centrífuga ha de corresponderle una fuerza opuesta de igual magnitud. Pero la reciprocidad más elemental de la física y el cálculo es la del producto inverso, como ya lo expresa la fórmula de la velocidad, (v = d/t), que es la distancia partida por el tiempo. En este sentido tan básico, tienen toda la razón los que han apuntado que la velocidad es el hecho y fenómeno primario de la física, del que el tiempo y el espacio se derivan.

El primer intento de derivar las leyes de dinámica del hecho primario de la velocidad se debe a Gauss, hacia 1835, cuando propuso una ley de la fuerza eléctrica basada no sólo en la distancia sino también en las velocidades relativas. El argumento era que leyes como la de Newton o la de Coulomb eran leyes de estática, más que de dinámica. Su discípulo Weber refinó la fórmula entre 1846 y 1848 incluyendo las aceleraciones relativas y una definición del potencial —un potencial retardado.

La fuerza electrodinámica de Weber es el primer caso de una fórmula dinámica completa en la que todas las cantidades son estrictamente proporcionales y homogéneas [8]. Fórmulas así parecían exclusivas de la estática de Arquímedes, o de leyes como la de la elasticidad de Hooke en su forma original. De hecho, aunque se trata de una fórmula expresa para cargas eléctricas y no una ecuación de campos, permite derivar las ecuaciones de Maxwell como un caso particular, e incluso pueden obtenerse los campos electromagnéticos integrando sobre el volumen.

La lógica de la ley de Weber podía aplicarse igualmente a la gravedad, y de hecho Gerber la utilizó para calcular la precesión de la órbita de Mercurio en 1898, diecisiete años antes de los cálculos de la Relatividad General. Como es sabido, la teoría de la Relatividad General aspiraba a incluir el llamado “principio de Mach”, aunque finalmente no lo consiguió; pero la ley de Weber sí era enteramente compatible con tal principio además de usar explícitamente cantidades homogéneas, mucho antes de que Mach escribiera sobre el tema.

Se ha dicho que el argumento y la ecuación de Gerber era “meramente empírica”, pero en cualquier otra época el no tener que crear postulados ad hoc se habría visto como la mejor virtud. En todo caso, si la nueva ley proporcional se utilizó para calcular una divergencia secular ínfima, y no para la elipse genérica, fue por la sencilla razón de que en un solo ciclo orbital no había nada que calcular ni para la vieja ni para la nueva teoría.

La fórmula puramente relacional de Weber no puede “explicar” tampoco la elipse, puesto que la fuerza y el potencial se derivan sin más del movimiento —pero al menos no hay nada unphysical en la situación, se garantiza el cumplimiento del tercer principio mientras se da cabida a una significación más profunda.

Irónicamente, al modificar la idea que se tenía de las fuerzas centrales, lo primero que Helmholtz y Maxwell le reprocharon a la ley de Weber era que no cumplía con la conservación de la energía, aunque finalmente en 1871 Weber demostrara que sí lo hacía con la condición de que el movimiento fuera cíclico —lo que ya era el requisito básico para la mecánica newtoniana o lagrangiana. La conservación es global, no local, pero lo mismo valía para las órbitas descritas en los Principia, no menos que las de Lagrange. No hay conservación local de fuerzas que puedan tener significado físico. El mismo Newton habló de una honda, siguiendo el ejemplo de Descartes, al hablar del movimiento centrífugo, pero en ningún lugar de sus definiciones se habla de que las fuerzas centrales deban entenderse como unidas por una cuerda. Sin embargo la posteridad tomó el símil al pie de la letra.

¿Por qué afirmar que hay en cualquier caso feedback, autointeracción? Porque todos los campos gauge, caracterizados por la invariancia del lagrangiano bajo transformaciones, equivalen a un feedback no trivial entre la fuerza y el potencial, lo que a su vez se confunde con el eterno “problema de la información”, a saber, cómo sabe la Luna dónde está el Sol y cómo “conoce” su masa para comportarse como se comporta.

Efectivamente, si el lagrangiano de un sistema —la diferencia entre la energía cinética y potencial- tiene un determinado valor y no es igual a cero, ello equivale a decir que la acción-reacción nunca se cumple de manera inmediata. Sin embargo el tercer principio de Newton se supone que se cumple de manera automática y simultánea, sin mediación de una secuencia de tiempo, y la misma simultaneidad se asume en la Relatividad General. La presencia de un potencial retardado, señala al menos la existencia de una secuencia o mecanismo, incluso si es incapaz de decirnos nada sobre él.

Lo cual nos demuestra que la reciprocidad aditiva y la multiplicativa son notoriamente diferentes; y la que nos muestra la proporción continua en el diagrama del Polo incluye la segunda clase. La primera es puramente externa y la segunda es interna al orden que se considera.

Todos los malentendidos del mecanicismo provienen de aquí. Y la diferencia esencial entre un sistema mecánico en el sentido trivial y un sistema ordenado u autoorganizado está justamente en este punto.

En su momento se creyó que los experimentos de Hertz confirmaban las ecuaciones de Maxwell y desmentían las de Weber, pero eso es otro malentendido porque si la ley de Weber —que fue el primero en introducir el factor relativo a la velocidad de la luz- no predecía ondas electromagnéticas, tampoco las excluía. Sencillamente las ignoraba. Por otra parte, tampoco han faltado los observadores perspicaces que han notado que en realidad lo único que demostró Hertz fue lo incuestionable de la acción a distancia, pero eso es ya otra historia.

Como contrapunto, vale la pena recordar otro hecho que demuestra, entre otras cosas, que Weber no se había quedado rezagado con respecto a su tiempo. Entre las décadas de 1850 y 1870 desarrolló un modelo estable del átomo con órbitas elípticas —muchas décadas antes de que Bohr propusiera su modelo de átomo circular, sin necesidad de postular fuerzas especiales para el núcleo.

La dinámica relacional de Weber muestra otro aspecto que a la luz de las presentes teorías puede parecer exótico: de acuerdo con sus ecuaciones, cuando dos cargas positivas se aproximan a una distancia crítica, producen una fuerza neta atractiva, en lugar de repulsiva. ¿Pero acaso no es la idea de una carga elemental exótica, o habrá que decir tan sólo puramente convencional? En cualquier caso, esto se aviene muy bien con el diagrama del Taijitu, en el que en puntos extremos se produce la inversión de las fuerzas polarizadas en su opuesto. Sin este rasgo, difícilmente podría hablarse de fuerzas y potenciales espontáneos, o si se quiere, “vivos”.

La física y la proporción continua

Ya vemos que existen razones puramente matemáticas para que la razón continua aparezca en los diseños de la naturaleza con independencia de la causalidad, ya sea física, química o biológica: de hecho la conveniencia del crecimiento logarítmico es independiente incluso de la forma propiamente dicha, como lo es el hecho elemental de la división discreta y asimétrica de las células.

Visto así, se trataría de una propiedad emergente, de un plano paralelo del acontecer. Por otra parte la idea de planos paralelos con una conexión meramente circunstancial con la realidad física resulta un tanto extraña, y en cualquier caso muy distante de lo que tan bien expresa el diagrama del polo —que ninguna forma ni nada aparente se sustrae a la dinámica.

El hecho es que la conexión entre la física y la proporción continua es muy tenue, por decir algo. Sin embargo tenemos importantes ocurrencias de esta razón incluso en el Sistema Solar, donde es casi imposible ignorar la mecánica celeste. Una mejor comprensión de la presencia de la proporción continua en la naturaleza no debería ignorar el marco que definen las teorías físicas fundamentales, ni lo que estas pueden dejar fuera.

Tenemos tres acercamientos posibles con grados crecientes de riesgo y profundidad:

Se puede estudiar la razón continua en la naturaleza con total independencia de la física subyacente, como una cuestión matemática; esta sería la postura más prudente, pero así hay bien poco que añadir a lo ya conocido —salvo, tal vez, por diversas implicaciones en teoría de la probabilidad y las distribuciones estadísticas. El citado A. Stakhov ha desarrollado una teoría algorítmica de la medida basada en dicha razón que puede usarse para analizar a su vez otras teorías metrológicas de ciclos, fracciones continuas y fractales como por ejemplo el llamado Escalamiento Global.

Se puede estudiar esta razón conforme a alguna de las visiones compatibles con la física conocida o estándar; por ejemplo, como lo ha hecho Richard Merrick, que hace una relectura neopitagórica de los aspectos colectivos armónicos de la mecánica ondulatoria, como las resonancias, y en las que phi sería un factor crítico de amortiguación [7]. Estas ideas son totalmente accesibles al experimento, ya sea en acústica o en óptica, de manera que pueden ser verificados o falsados.

La idea de interferencia armónica de Merrick está al alcance de cualquiera y no carece de profundidad. Se complementa naturalmente con la concepción holográfica promovida por David Bohm y su distinción entre el orden explicado y el orden implicado. Aunque la interpretación de Bohm no es estándar, sí es compatible con los datos experimentales. La teoría de la interferencia armónica también puede combinarse con otras teorías de ciclos y escalas matemáticas como las citadas.

O, finalmente, se pueden considerar teorías clásicas que difieren en alguna medida de las actuales teorías estándar, pero que pueden aportar perspectivas más profundas sobre el tema. Dentro de esta categoría, hay varios grados de cuestionamiento de las principales teorías vigentes: desde una lectura ampliada de la termodinámica, hasta revisiones en profundidad de la mecánica clásica, la mecánica cuántica y el cálculo. Esta tercera opción no es muy especulativa, sino más bien divergente en el espíritu y la interpretación.

Aquí nos centraremos más en el tercer nivel, que puede parecer también el más problemático. Uno puede preguntarse qué necesidad hay de revisar la física mejor establecida para buscarle razones más profundas a una mera constante matemática que no las requiere. Además, los dos primeros niveles ya ofrecen espacio de sobra para la especulación. Pero esto sería una forma muy superficial de plantearlo.

No podemos profundizar en la presencia de la razón continua en un símbolo de la reciprocidad perfecta olvidándonos de la cuestión de si nuestras presentes teorías son el mejor exponente de la continuidad, la homogeneidad o la reciprocidad —y en verdad están muy lejos de serlo.

POLO DE INSPIRACIÓN – El hilo de Ariadna

Los que gusten de problemas sencillos, pueden intentar demostrar esta relación antes de seguir adelante. Es insultantemente fácil:

φ = 1/φ +1 = φ-1+1 = 1/φ-1

Debemos este afortunado descubrimiento a John Arioni. El que quiera puede ver la elemental demostración, junto a otras relaciones inesperadas, en la página correspondiente de Cut the knot, [1]. El número φ es, naturalmente, la razón áurea (1+√ 5)/2, en cifras decimales 1,6180339887…, y cuyo recíproco es 0,6180339887… . Y puesto que sus infinitas cifras pueden calcularse por medio de la fracción continua más simple, aquí también la llamaremos razón continua o proporción continua, debido a su rol de mediador entre aspectos discretos y continuos de la naturaleza y la matemática.

Podría pensarse que esta es la típica asociación casual de las páginas de matemáticas recreativas. Se puede obtener φ de muchas maneras con círculos, pero por lo que sé ésta es la más elemental de todas, y la única en que la unidad de referencia es el radio. Dicho de otro modo, esta relación parece demasiado simple y directa para no contener algo importante. Y sin embargo no se ha descubierto sino muy recientemente.

John Arioni

Desde Euclides y probablemente desde mucho antes, la entera historia de las investigaciones sobre esta proporción se ha derivado de la división de un segmento “en extrema y media razón”, y ha proseguido con la construcción de cuadrados y rectángulos. Los casos más inmediatos implicando al círculo provienen de la construcción del pentágono y el pentagrama, conocidos sin duda por los pitagóricos; pero no hace falta saber nada de matemáticas para darse cuenta de que la relación contenida en este símbolo es de un orden mucho más fundamental —tanto como, desde el punto de vista cuantitativo, el 2 está más cerca del 1 que el 5, o desde el punto cualitativo, la díada está más cerca de la mónada que la péntada.

Si el círculo y su punto central son el símbolo más general y abarcador de la mónada o unidad, aquí sin duda tenemos la proporción más inmediata y reveladora de la reciprocidad, o simetría dinámica, presentada tras la división en dos partes. El Taijitu tiene una doble función, como símbolo del Polo supremo, más allá de la dualidad, y como representación de la primera gran polaridad o dualidad. Se encuentra, como si dijéramos, a mitad de camino entre ambos, y ambos se vinculan por una relación ternaria —justamente la proporción continua.

Una relación es la percepción de una conexión dual, mientras que una proporción o correlación implica una relación de tercer orden, una “percepción de la percepción”. Desde al menos los tiempos del triángulo de Kepler, hemos sabido que la razón áurea articula y conjuga en sí misma las tres medias más fundamentales de la matemática: la media aritmética, la media geométrica, y la llamada media armónica entre ambas.

Podríamos preguntarnos qué hubiera ocurrido si Pitágoras hubiera conocido esta correlación, que ciertamente habría exaltado a Kepler también. Se dirá que, como cualquier otro supuesto contrafáctico, la pregunta es irrelevante. Pero la pregunta podría no estar dirigida tanto a los pasados que pudieron ser como a los futuros posibles. Pitágoras difícilmente hubiera podido sorprenderse tanto como nosotros, puesto que nada sabía de los valores decimales de φ o de π . Hoy sabemos que son dos razones con un número infinito de cifras, y que sin embargo se vinculan de manera exacta por la más elemental relación triangular.

La verdad matemática está más allá del tiempo, pero su revelación y construcción no. Esto nos permite ver ciertas cosas con la mirada de una Geohistoria, como si dijéramos, en cuatro dimensiones. Se ha especulado sobre lo que habría pasado si los griegos hubieran conocido y hecho uso del cero, sobre si tal vez hubieran desarrollado el cálculo moderno. Ello es muy dudoso, pues aún habrían necesitado dar una serie de grandes saltos muy lejanos a su concepción del mundo, como el sistema de numeración, el cero y su uso posicional, la idea de derivada, etcétera. Las espirales dobles eran un motivo común en la Grecia arcaica, y las especulaciones aritmológicas de los pitagóricos, muy similares en naturaleza a las que con el paso del tiempo desarrollaron los chinos; pero por lo que fuera los griegos no entrelazaron las dos espirales en una, y, en la misma China, no se llegó a un diagrama como el que hoy conocemos sino hasta finales de la dinastía Ming, tras una larga evolución.

Lo que es sólo otro ejemplo de cuánto cuesta ver lo más simple. No es tanto la cosa misma, sino el contexto en el que emerge y en el que encaja. Según se mire, esto puede ser tan alentador como desalentador. En el conocimiento siempre hay un alto margen para simplificar, pero como en tantas otras cosas, ese margen depende en la mayor medida de saber encontrar las circunstancias.

El Taijitu, el símbolo del polo supremo, es un círculo, una onda y un vórtice todo en uno. Por supuesto, el vórtice está reducido a su mínima expresión en la forma de una doble espiral. De forma característica, los griegos separaron sus espirales dobles, y llegaron con el tiempo a dibujarlas cuadradas, en lo que hoy conocemos como grecas. No es sino otra expresión de su gusto por la estática, un gusto que también sirvió de marco general para la recepción de la proporción continua en la matemática y el arte, y que ha llegado hasta nosotros a través del Renacimiento.

La serie de números que aproximan hasta el infinito la razón continua, conocida ahora como números de Fibonacci, aparecía ya mucho antes en los triángulos de números consagrados en la India al monte Meru, “la montaña que rodea al mundo”, que es justamente otra designación del Polo. Como es sabido, de esta figura, conocida en Occidente como triángulo de Pascal, se derivan un enorme número de propiedades combinatorias, de teoría de la probabilidad o de escalas y secuencias de notas musicales.

El triángulo polar, conocido en otras culturas como triángulo de Khayyam o triángulo de Yang Hui, es uno de esos objetos matemáticos de los que se dice que están “extraordinariamente bien conectados”: de él pueden derivarse la expansión binomial, las distribuciones binomial y normal de la estadística, la transformada sen(x)n+1/x del análisis armónico, la matriz y la función exponencial, o los valores de los dos grandes engranajes del cálculo, las constantes π y e. Resulta casi increíble que la elemental conexión con el número de Euler no se haya descubierto hasta el año 2012 —por Harlan J. Brothers. Se trata, en lugar de sumar todas las cifras de cada fila, simplemente de extraer la ratio de ratios de su producto; la diferencia entre sumas y productos es un motivo que emergerá varias veces a lo largo de este artículo.

El triángulo polar parece una representación aritmética y “estática”, mientra que el Taijitu es como una instantánea geométrica de algo puramente dinámico. Sin embargo las complejas implicaciones para la música de este triángulo, parcialmente exploradas por el gran trabajo de investigación de Ervin Wilson, burlan en buena medida las separaciones creadas por adjetivos como “estático” y “dinámico”. En cualquier caso, si la escalera de cifras descrita por el monte Meru es un despliegue infinito, al ver las líneas escondidas en el diagrama circular del Polo sabemos de inmediato que se trata de algo irreductible —la primera nos ofrece su despliegue aritmético y la segunda su repliegue geométrico.

La primera mención conocida del triángulo, si bien de forma críptica, se encuentra en el Chandaḥśāstra de Pingala, donde el monte Meru se muestra como arquetipo formal para las variantes métricas en la versificación. También cabe decir que el primer autor chino que trata del triángulo polar no es Yang Hui sino Jia Xian (ca. 1010–1070), estricto contemporáneo del primer autor que difundió el símbolo del yin y del yang, el filósofo y cosmólogo Zhou Dunyi (1017–1073).

Hoy en día muy pocos son consciente de que ambas figuras son representaciones del Polo. Es mi conjetura que todas las relaciones matemáticas que pueden derivarse del triángulo polar también pueden encontrarse en el Taijitu, o al menos generarse a partir de él, aunque ciertamente bajo un aspecto muy diferente, y con un cierto giro que posiblemente implique a φ. Ambas serían la expresión dual de una misma unidad. Queda para los matemáticos ver qué hay de cierto en esto.

Entre contar y medir, entre la geometría y la aritmética, tenemos las áreas básicas del álgebra y el cálculo; pero hay sobrada evidencia de que éstas últimas ramas se han desarrollado en una dirección particular más que en otras —más en descomponer que en recomponer, más en el análisis que en la síntesis, más en las sumas que en los productos. Así que el estudio de las relaciones entre las dos expresiones del polo podría estar llena de interesantes sorpresas y resultados básicos pero no triviales, y plantea una orientación muy diferente para las matemáticas.

Se observa que el triángulo aritmético tiene diversas asociaciones con aspectos fundamentales del cálculo y la constante matemática e, mientras que el Taijitu y la constante φ carecen a este respecto de conexiones relevantes —de ahí el carácter totalmente marginal de la proporción continua en la ciencia moderna. Se ha dicho que ésta es una relación estática, a diferencia de la íntima relación con el cambio del número de Euler. Sin embargo el carácter extremadamente dinámico del símbolo del yin y el yang ya nos advierte de un cambio general de contexto.

Durante siglos el cálculo ha estado disolviendo la relación entre la geometría y el cambio en beneficio de la aritmética, de no tan puros números. Ahora podemos darle la vuelta a este reloj de arena, observando lo que ocurre en la ampolla superior, la inferior y en el cuello.

*

La disposición de la proporción continua entre el yin y el yang en un entorno puramente curvilíneo no solo no es estática sino que por el contrario no puede ser más dinámica y funcional, y, efectivamente, el Taijitu es la expresión más acabada de actividad y dinamismo con el número mínimo de elementos. El diagrama tiene además una intrínseca connotación orgánica y biológica, evocando de forma inevitable la división celular, que en realidad es asimétrica, y, al menos en el crecimiento vegetal, sigue a menudo una secuencia gobernada por esta razón. Es decir, el contexto en el que aquí emerge la razón continua es la verdadera antítesis de su recepción griega prolongada hasta hoy, y eso debería tener profundas consecuencias en nuestra percepción de dicha proporción.

Oleg Bodnar ha desarrollado un elegante modelo matemático de la filotaxis vegetal con funciones hiperbólicas áureas en tres dimensiones y con coeficientes recíprocos de expansión y contracción que puede verse en el gran libro panorámico que Alexey Stakhov dedica a la Matemática de la Armonía [2]. Es un ejemplo de simetría dinámica que puede conjugarse perfectamente con el gran diagrama de la polaridad, con independencia de la naturaleza de las fuerzas físicas subyacentes.

La presencia de patrones espirales basados en la proporción continua y sus series numéricas en los seres vivos no parece demasiado misteriosa. Ya sea en el caso de un nautilo o de zarcillos vegetales, la espiral logarítmica —el caso general- permite un crecimiento indefinido sin cambio de forma. Las hélices y espirales son un resultado inevitable de la dinámica del crecimiento, por la acreción constante de material sobre lo que ya está allí. En todo caso habría que preguntar por qué entre todas las posibles medidas de la espiral logarítmica surgen tan a menudo las que se acercan a este número en particular.

Y la respuesta sería que las aproximaciones discretas a la proporción continua tienen también unas propiedades óptimas desde varios puntos de vista —y el crecimiento celular depende en última instancia del proceso discreto de división celular, y a niveles de organización más elevados, de otros elementos discretos como las hojas. Puesto que la convergencia de la razón continua es la más lenta, y las plantas tienden a ocupar al máximo el espacio disponible, esta proporción les permite emitir el mayor número de hojas en un espacio dado.

Esta explicación parece, desde un punto de vista descriptivo, suficiente, y hace innecesario invocar la selección natural o mecanismos más profundos relacionados con la física. Sin embargo, además de la relación básica entre lo continuo y lo discreto, contiene implícito un vínculo de gran alcance entre formas generadas por un eje, como las piñas de un pino, y la termodinámica, en particular con el llamado “principio de la máxima producción de entropía”, que volveremos a encontrar más adelante.

Ni que decir tiene que no pensamos que esta proporción contenga “el secreto” para ningún canon universal de belleza, puesto que seguramente un canon tal ni siquiera existe. Sin embargo su presencia recurrente en los patrones de la naturaleza nos muestra aspectos muy variados de un principio espontáneo de organización, o autoorganización, detrás de lo que denominamos superficialmente “diseño”. Por otra parte la aparición de esta constante matemática, por sus mismas irreductibles propiedades, en un gran número de problemas de máximos y mínimos —de optimización- y de parámetros con puntos críticos permite vincularla natural y funcionalmente con el diseño humano y su búsqueda de las configuraciones más eficientes y elegantes.

La emergencia de la razón continua en el símbolo dinámico del polo —del principio mismo- augura un cambio sustantivo tanto en la contemplación de la naturaleza como en las construcciones artificiales de los seres humanos. Contemplación y construcción son actividades antagónicas. Una va de arriba abajo y la otra de abajo arriba, pero siempre se produce alguna suerte de equilibrio entre ambas. La contemplación permite liberarnos de los vínculos ya construidos, y la construcción se apresta a llenar el vacío resultante con otros nuevos.

Resulta un tanto extraño que la razón continua, a pesar de su frecuente presencia en la naturaleza, se encuentre tan poco conectada con las dos grandes constantes del cálculo, π y e —salvo por la ocurrencia de la “espiral logarítmica áurea”, que es sólo un caso particular de espiral equiangular. Sabemos que tanto π como e son números trascendentales, mientras que φ no lo es, aunque sí es el “número más irracional”, en el sentido de que es el de más lenta aproximación por números racionales o fracciones. φ también es el más simple fractal natural.

Hasta ahora, el vínculo más directo con las series trigonométricas ha sido a través del decágono y las identidades φ = 2cos 36° = 2cos (π/5). Tampoco hasta ahora se ha asociado demasiado con los números imaginarios, siendo i, por así decirlo, la tercera gran constante, que se conjuga con las dos citadas en la fórmula de Euler, de la que la llamada identidad de Euler (eiπ = -1) es un caso particular.

El número e, base de la función que es su propia derivada, aparece naturalmente en tasas de cambio, las subdivisiones ad infinitum de una unidad que tienden a un límite y en la mecánica ondulatoria en general. Los números imaginarios, por otro lado, tan comunes en la física moderna, aparecen por primera vez con las ecuaciones cúbicas y retornan cada vez que se asignan grados de libertad adicional al plano complejo.

En realidad los números complejos se comportan exactamente como vectores con dos dimensiones, en los que la parte real es el producto interno o escalar y la parte llamada imaginaria corresponde al producto cruz o vectorial; así que sólo cabe asociarlos a movimientos, posiciones y rotaciones en el espacio en dimensiones adicionales, no a las cantidades físicas propiamente dichas.

Esto se dice más fácil que se piensa, puesto que es aún más “complejo” determinar qué es una cantidad física o una variable matemática independientemente de cambio y movimiento. Tanto para interpretar geométricamente el significado de vectores y números complejos en física como para generalizarlos a cualquier dimensión, se puede usar una herramienta como el álgebra geométrica —ese “álgebra que fluye de la geometría”, al decir de Hestenes; pero aún así queda más para la geometría de lo que podemos pensar.

Muchos problemas se simplifican en el plano complejo, o al menos eso nos aseguran los matemáticos. Uno de ellos bajo el seudónimo Agno enviaba en el 2011 una entrada a un foro de matemáticas con el título “Razón Áurea Imaginaria”, que muestra una conexión directa con π y e : Φi = e ± πi/3 [3]. Otro autor anónimo encontró esta misma identidad en 2016, junto con similares derivaciones, buscando propiedades fundamentales de una operación conocida como “adición recíproca”, de interés en cálculos de resistencias en paralelo y en circuitos. Siendo la refracción un tipo de impedancia, también puede tener pertinencia en la óptica. Nuestro motivo de partida puede relacionarse desde el comienzo también con las series geométricas y funciones hipergeométricas ordinarias y con argumento complejo asociadas a fracciones continuas, formas modulares y series de Fibonacci, e incluso con la geometría no conmutativa [4]. La razón áurea imaginaria, en cualquier caso, refleja como en un espejo muchas de las cualidades de su modelo real.

El Taijitu es un círculo, una onda y un vórtice, todo en uno. El genio sintético de la naturaleza es bien diferente del de el hombre, y no necesita ninguna unificación porque le basta con no separar. A la naturaleza, como decía Fresnel, no le importan las dificultades analíticas.

El diagrama del Taijitu viene a ser una sección plana de una doble espiral expandiéndose y contrayéndose en tres dimensiones, movimiento éste que parece darle una “dimensión adicional” en el tiempo. Resulta siempre un auténtico desafío la visualización y recreación animada de este proceso, a la vez espiral y helicoidal, dentro de un cilindro vertical, que no es sino la representación completa de la propagación indefinida de un movimiento ondulatorio, el “vórtice esférico universal” en el que se detiene René Guenon en tres muy breves capítulos de su obra “El simbolismo de la Cruz” [5]. La cruz de la que habla Guenon es ciertamente un sistema de coordenadas en el sentido más metafísico de la palabra; pero el lado más físico del tema no es en absoluto despreciable.

La propagación de una onda en el espacio es un proceso tan simple como difícil de captar en su integridad; no hay más que pensar en el principio de Huygens, el modo universal de propagación, que subyace también a toda la mecánica cuántica, y que entraña una deformación continua en un medio homogéneo.

En ese mismo año de 1931 en que Guenon escribía sobre la evolución del vórtice esférico universal, se publicaba el primer trabajo sobre lo que hoy conocemos como la fibración de Hopf, el mapa de las conexiones entre una esfera tridimensional y otra en dos dimensiones. Esta fibración, tan enormemente compleja, se encuentra incluso en un simple oscilador armónico bidimensional. También en ese año, el físico Paul Dirac conjeturaba la existencia de ese unicornio de la física moderna conocido como monopolo magnético, que trasladaba el mismo tipo de evolución al contexto de la electrodinámica cuántica.

Un acercamiento completamente fenomenológico a la clasificación de los diferentes vórtices nos la da el maravilloso trabajo de Peter Alexander Venis [6]. No hay aquí nada de matemática, ni avanzada ni elemental, pero se propone una secuencia de transformaciones de 5 + 5 + 2, o bien 7 clases de vórtices con mucho tipos e incontables variantes que se despliegan desde lo completamente indiferenciado para volver de nuevo a lo indiferenciado —o a la infinidad de la que habla Venis. Las transiciones desde el punto sin extensión a las formas aparentes de la naturaleza sin el concurso de los vórtices son cuando menos arbitrarias, de ahí su importancia y universalidad.

Peter Alexander Venis

Venis no toca ni la matemática ni la física de un tema complejo como los vórtices, y por supuesto no aplica a ellos la proporción continua; por el contrario nos brinda el privilegio de una visión virgen de estos ricos procesos, y en la que, como sin quererlo, parecen darse cita la visión de un naturalista presocrático y la capacidad de síntesis de un sistematizador chino.

Aun si la secuencia de Venis admite variaciones, nos ofrece en todo caso un modelo morfológico de evolución que va más allá del alcance de las ciencias y disciplinas ordinarias. El autor engloba bajo el término “vórtices” procesos de flujo que pueden tener rotación o no, pero hay un buen motivo para hacerlo, puesto que esto es necesario para abarcar condiciones clave de equilibrio. También aplica la teoría del yin y el yang de una forma a la vez lógica e intuitiva, que probablemente admite una traducción elemental a los principios cualitativos de otras tradiciones.


Peter Alexander Venis

El estudio de esta secuencia de transformaciones, en la que se unen estrechamente cuestiones de acústica y de imagen, debería ser de interés inmediato para profundizar en los criterios de la morfología y el diseño incluso sin necesidad de adentrarse en consideraciones ulteriores. Pero hay mucho más que eso, y luego volveremos sobre ello.

Una descripción independiente de métricas sería, justamente, el contrapunto perfecto para un sujeto tan perjudicado por la discrecionalidad y la arbitrariedad en los criterios de medida como el estudio de la proporcionalidad. Naturalmente, también la matemática dispone de herramientas esencialmente libres de métrica, como las formas diferenciales exteriores, que permiten estudiar los campos de la física con la máxima elegancia. Entonces, tal vez, las métricas de las que se ocupa la física podrían ejercer de término medio entre ambos extremos.

Así pues, en esta búsqueda por definir mejor el entorno de aparición de la razón continua en el mundo de las apariencias, podemos hablar de tres tipos de espacios básicos: el espacio amétrico, los espacios métricos, y los espacios paramétricos.

Por espacio amétrico entendemos los espacios que son libres de métrica y la acción de medir, desde la secuencia puramente morfológica de vórtices ya comentada a la geometría proyectiva y la afín o las partes independientes de métrica de la topología o las formas diferenciales. El espacio amétrico, el espacio sin medida, es el único y verdadero espacio; si a veces hablamos de espacios amétricos es sólo por las diversas conexiones posibles con los espacios métricos.

Por espacios métricos, entendemos sobre todo a los de los de las teorías fundamentales en física, no sólo las actualmente en circulación sino también otras relacionadas, con un énfasis especial en el espacio métrico euclídeo en tres dimensiones de nuestra experiencia ordinaria. Incluyen constantes físicas y variables, pero aquí nos interesan particularmente las teorías que no dependen de constantes dimensionales y pueden expresarse en proporciones o cantidades homogéneas.

Por espacios paramétricos o espacios de parámetros entendemos los espacios de correlaciones, datos, y valores ajustables que sirven para definir modelos matemáticos, con cualquier número de dimensiones. Podemos llamarlo también el sector algorítmico y estadístico.

No nos vamos a ocupar aquí de las incontables relaciones que puede haber entre estos tres tipos de espacios. Baste decir que para salir de este laberinto de la complejidad en el que ya se encuentran inmersas todas las ciencias el único hilo de Ariadna posible, si es que hay alguno, tiene que describir un camino retrógrado: de los números a los fenómenos, con el énfasis puesto en estos últimos y no al contrario. Y nos referimos a fenómenos que no están ya previamente acotados por el espacio de medida.

Mucho se ha hablado de la distinción entre las “dos culturas”, las ciencias y las humanidades, pero se debe observar que, antes de intentar cruzar esa distancia hoy por hoy insalvable, habría que empezar por salvar la brecha entre ciencias naturales, descriptivas, y una ciencia física que, al justificarse por sus predicciones, se confunde cada vez más con el poder de abstracción de la matemática mientras se aísla del resto de la naturaleza, a la que querría servir de fundamento. Revertir esta fatal tendencia es de la mayor importancia para el ser humano, y podemos dar por bien empleados todos los esfuerzos encaminados en esa dirección.