POLE OF INSPIRATION – The spark and the thread

Those who like simple problems can try to demonstrate this relationship before moving on. It’s insultingly easy:

φ = 1/φ +1 = φ-1+1 = 1/φ-1

We owe this fortunate discovery to John Arioni. The elementary demonstration, along with other unexpected relationships, is on the site Cut the knot [1]. The number φ is, naturally, the golden ratio (1+√ 5)/2, in decimal figures 1.6180339887…, and φ-1 is the reciprocal, 0.6180339887… . And since its infinite decimal places can be calculated by means of the simplest continuous fraction, here we will also call it the continuous ratio or continuous proportion, because of its unique role as mediator between discrete and continuous aspects of nature and mathematics.

Continuar leyendo «POLE OF INSPIRATION – The spark and the thread»

POLO DE INSPIRACIÓN – El hilo de Ariadna

Los que gusten de problemas sencillos, pueden intentar demostrar esta relación antes de seguir adelante. Es insultantemente fácil:

φ = 1/φ +1 = φ-1+1 = 1/φ-1

Debemos este afortunado descubrimiento a John Arioni. El que quiera puede ver la elemental demostración, junto a otras relaciones inesperadas, en la página correspondiente de Cut the knot, [1]. El número φ es, naturalmente, la razón áurea (1+√ 5)/2, en cifras decimales 1,6180339887…, y cuyo recíproco es 0,6180339887… . Y puesto que sus infinitas cifras pueden calcularse por medio de la fracción continua más simple, aquí también la llamaremos razón continua o proporción continua, debido a su rol de mediador entre aspectos discretos y continuos de la naturaleza y la matemática.

Continuar leyendo «POLO DE INSPIRACIÓN – El hilo de Ariadna»