Tao of Technoscience

The paths in the science-technology continuum may be innumerable but they all presuppose a potential reciprocity between knowledge and application —thus between knowledge and power. And yet we still have no idea of what kind of circle knowledge and power draws on us.

Newton’s celestial mechanics seemed initially far removed from worldly affairs but the unwarranted generalization of his principles to things far removed from human artifacts had the effect of turning the world into a wheelless rolling machine.

Society has taken shape as it becomes isolated from Nature but cannot subsist without a permanent commerce with her which in turn depends more and more on our knowledge of it. Any dominance relationship over Nature is reproduced within society, between some parts that exercise control and others parts subject to this control.

The solar system bound by gravity, or the function of the heart in our blood circulation, have been seen as simply governed by the concept of force in our present world view. Since the middle of the 20th century, stability theory and cybernetics developed a theory of control over these so-called “blind forces”, generalizing a version of entropy that was already far removed from the original thermodynamical context. Now it remains to be seen what twist would result for control theory assuming spontaneous regulation in action principles, in the Second Law and in the collective resonance between elements; as well as in the relationship between these three aspects.

Overcoming reductionism cannot in any way involve last-minute corrections that seek to compensate increasing degrees of abstraction with also increasing degrees of subjectivity for the sake of the inclusion of the observer, be it in statistical mechanics, quantum mechanics or relativity; it involves in any case correcting the gaps in the foundational position, which so far remains unaffected.

But the reciprocity between man and nature goes far beyond anything we suspect, and cannot be encompassed by a mere theoretical turn, however wide or deep it may seem. It is not a matter of looking for an idealized external nature either, since all that is trapped in the human being is also nature.

We do not know and maybe we do not want to live without machines. Can we radically change our relationship with them? Machines, too, are trapped, molded and compressed nature; and while we are forced to depend on them we are routinely trained for obedience. I will now pick up a few paragraphs from a topic I discussed at greater length in Techno-Science and the Laboratory of Self:

“Vico’s principle, which states that knowing is making, is more general than Descartes’. But surely one can also doubt Vico’s principle. I can move my hand, but do I know how I move my hand? Second hand, so to speak, not first hand. Of course making is not doing, except in thinking, and we make machines not to do things directly, and not to directly think. We can then try to introduce into the realm of knowledge-power the duly reformed Vico principle: I only know that in what I take part, and to the extent that I take part.

It is not by calculus, but by the practical arts, that we know the world best. The same concept of efficiency, as economy of effort or elegance, was a natural notion in the art of all cultures before techniques were invaded by stacked layers of scientific mediations; now it would have to be taken out of the bottom of the stack. There is a natural sense of efficiency in any physical activity, in the right intonation, in any gesture or brushstroke.

To move from one area to another, from the functional domain governed by calculus to the intuitive functioning, we can take as example the biological feedback and biofeedback. A signal that corresponds to a vital function can be used to vary it at will, within certain limits of course. However, and this is the important thing, here any notion of manipulation is out of place, as in this context loses all meaning. Even control, with all its vast current theory, is subsumed in the idea of self-control, which far from being a particular case, seems to be the most indefinite and general.

In our ordinary physical control of external objects, the relationship between action and calculus is also reversed. Think of the complicated balance involved riding a bicycle; dynamics can hardly solve the problem by means of centrifugal forces in the case of slow motion, but it gets out of hands in cases with higher speeds. And yet for the cyclist it is just the opposite: speed is the solution, and excessive slowness the problem. Motion is shown by pedalling.

However, within the category of self-control there is more than just cycles of perception and action; there is also self-observation. In the case of biofeedback there are two basic cases, direct monitoring of a function, such as when we observe our breathing and modify it without even intending to do so, and indirect monitoring, either by means of a mirror that returns our image to try to move involuntary muscles or by a device with sensors that translates signals generated by ourselves without being aware of it.

The biofeedback motif may seem very limited as it has hardly transcended the level of a curiosity since its appearance and diffusion fifty years ago. However, it marks a turning point in the relationship between man and the machine. If the most helpful idea in explaining the emergence of tools is that they are extensions or prostheses that project our capacity as organisms, and if we have later recognized that from certain point onwards all harmonious relations between the tool and the organ are lost, here for the first time we use the machine to help us regain consciousness of organic functions that have already sunk below the threshold of attention.

So, if technology came out of the biology of the conscious organism, it is precisely here that it returns to it in the most mediated way possible, and with a somewhat undecided intention. Clearly, the entire cybernetic theory of control would have to return to self-control as its archetype, since this one already incorporates the cycles of perception and action, allowing the right space for the self-consciousness around which they revolve; the automatic is subsumed in self-control, self-control in self-interaction and this in spontaneity.

In spite that gauge fields contain a basic feedback mechanism, the use of the Lagrangian in control theory seems totally secondary, which is a curious situation. Things could change working with Weber-type forces, and also with dissipative, thermomechanical forces, in the sense proposed by Pinheiro. The measure theory would also have to be adjusted to the different requirements of this type of systems.

Today it is said that the double access to perception and action defines an artificial intelligence problem. But a greater field in self-perception and natural intelligence awaits us.

Tao de la Tecnociencia

Los caminos en el continuo ciencia-tecnología pueden ser innumerables pero todos presuponen una reciprocidad potencial entre conocimiento y aplicación —luego entre conocimiento y poder. Y sin embargo aún no tenemos la menor idea de qué clase de círculo cierran conocimiento y poder sobre nosotros.

La mecánica celeste de Newton parecía inicialmente muy alejada de los asuntos mundanos pero la generalización no justificada de sus principios a cosas muy alejadas de los artefactos humanos tuvo el efecto de convertir al mundo en una máquina que rodaba sin que se le vieran las ruedas.

La sociedad se ha ido dando forma a sí misma en la medida en que se aislaba de la naturaleza pero no puede subsistir sin un intercambio o comercio con ella que a su vez depende de nuestro conocimiento de ella. Cualquier relación de dominio sobre la naturaleza se reproduce al interior de la sociedad, entre unas partes que ejercen el control y otras que lo padecen.

El sistema solar ligado por la gravedad, o la función del corazón en la circulación, se han visto como gobernados sin más por el concepto de fuerza en nuestra presente cosmovisión. Desde mitad de siglo XX la teoría de la estabilidad y la cibernética han desarrollado una teoría del control sobre esas mismas pretendidas “fuerzas ciegas”, generalizando una versión de la entropía que ya de por sí estaba muy alejada de su contexto termodinámico original. Habría que ver cómo evoluciona la teoría del control si se asume la regulación espontánea en los principios dinámicos de acción, en la Segunda Ley y en la resonancia colectiva entre elementos; así como en la relación entre estos tres aspectos.

La superación del reduccionismo de ningún modo puede pasar por las correcciones de última hora que pretenden compensar grados crecientes de abstracción con grados también crecientes de subjetividad en nombre de la inclusión del observador, ya sea en la mecánica estadística, la mecánica cuántica o la relatividad; pasa en todo caso por corregir las lagunas de la posición fundacional, que hasta ahora permanece inafectada.

Pero la reciprocidad entre el hombre y la naturaleza llega mucho más lejos de todo cuanto sospechamos, y no puede ser abarcada por un mero giro teórico, por amplio o profundo que parezca. No se trata de buscar una naturaleza externa idealizada a la que retornar, pues también todo lo que está atrapado en el ser humano es naturaleza.

No sabemos ni tal vez queremos prescindir de las máquinas. ¿Podemos cambiar nuestra relación con ellas? También las máquinas son naturaleza atrapada, comprimida y moldeada; y mientras se nos fuerza a depender de ellas se nos entrena rutinariamente para la obediencia. Recojo ahora algunos párrafos de un tema que traté más extensamente en La tecnociencia y el laboratorio del yo:

“El principio de Vico, que afirma que sólo comprendemos lo que hacemos, es más general que el de Descartes. Aunque seguramente también se puede dudar del principio de Vico. Sé mover mi mano, pero ¿sé cómo es que muevo mi mano? De segunda mano, por así decir, no de primera. Por supuesto hacer no es producir, salvo en el pensar, y producimos máquinas para no hacer cosas directamente, y para no directamente pensar. Podemos tratar entonces de introducir en el ámbito del saber-poder el principio de Vico debidamente reformado: sólo comprendo aquello en lo que participo, y en la medida en que participo.

No es por el cálculo, sino por las artes prácticas, que mejor conocemos el mundo. El mismo concepto de eficiencia, como economía de esfuerzo o elegancia, era una noción natural en el arte de todas las culturas antes de que las técnicas fueran invadidas por una montaña apilada de mediaciones científicas; habría que sacarla del fondo de la pila. Existe un sentido natural de la eficiencia en cualquier actividad física, en la entonación justa, en cualquier gesto o pincelada.

Para pasar de un ámbito al otro, del funcional regido por el cálculo al funcional intuitivo, pensemos por ejemplo en el biofeedback o realimentación biológica. Una señal que esté en correspondencia con una función vital nos puede servir para variar ésta a voluntad, dentro por supuesto de unos límites. Sin embargo, y esto es lo importante, aquí está fuera de lugar cualquier noción de manipulación, que en este contexto pierde todo su sentido. Incluso el control, con toda su vasta teoría actual, queda subsumido en la idea de autocontrol, que lejos de ser un caso particular, parece el caso más indefinido y general.

En nuestro control físico ordinario de objetos externos también se invierte la relación entre acción y cálculo. Pensemos en el complicado equilibrio que conlleva ir en bicicleta; la dinámica a duras penas puede resolver el problema mediante las fuerzas centrífugas en caso de movimiento lento, pero se le va de las manos en casos de mayor velocidad. Y sin embargo para el ciclista es todo lo contrario: la velocidad es la solución, y la excesiva lentitud el problema. El movimiento se demuestra pedaleando.

Sin embargo dentro de la categoría del autocontrol hay algo más que ciclos de percepción y acción; hay también autoobservación. En el caso del biofeedback se presentan dos casos básicos, el seguimiento de una función de forma directa, como cuando al observar nuestra respiración la modificamos sin siquiera pretenderlo, y el seguimiento indirecto, ya sea mediante un espejo que nos devuelve nuestra imagen para intentar mover músculos involuntarios o por un aparato con sensores que nos traduce señales generadas por nosotros mismos pero de las que nosotros no somos conscientes.

El motivo del biofeedback puede parecer muy limitado puesto que desde su aparición y difusión hace cincuenta años apenas ha trascendido el nivel de una curiosidad. Sin embargo marca un punto de inflexión en la relación entre el hombre y la máquina. Si la idea más socorrida a la hora de explicar el surgimiento de herramientas es como extensiones o prótesis que proyectan fuera nuestra capacidad como organismos, y si luego hemos dado en reconocer que a partir de cierto punto se pierde toda relación armónica entre la herramienta y el órgano, aquí por primera vez empleamos la máquina para que nos ayude a tener o recobrar la conciencia de funciones orgánicas hundidas ya por debajo del umbral de la atención.

Así pues, si la técnica salió de la biología del organismo consciente, es justamente aquí que retorna a ella de la forma más mediada posible, aunque con la intención más directa. En puridad, toda la teoría cibernética del control tendría que retornar al autocontrol como su arquetipo, puesto que éste ya incorpora los ciclos de percepción y acción permitiendo el hueco justo para la autoconciencia en torno a la que giran; lo automático se subsume en el autocontrol, el autocontrol en la autointeracción y ésta en lo espontáneo.

A pesar de que estamos hablando de que los campos gauge contienen un mecanismo básico de feedback, el uso del lagrangiano en teoría del control parece totalmente secundario, lo que supone una curiosa situación. Las cosas podrían cambiar si se trabajara con fuerzas del tipo de la de Weber, y también con fuerzas disipativas, termomecánicas, en el sentido propuesto por Pinheiro. También la teoría de la medida tendría que ajustarse a los requerimientos de este tipo de sistemas.

Hoy se dice que el doble acceso a la percepción y a la acción definen un problema de inteligencia artificial. Pero todavía hay un campo mayor esperándonos en la autopercepción y la inteligencia natural.

Biological feedback – quantitative and qualitative models

In a recent paper we speculated on the presence of a geometric phase or phase memory in the bilateral nasal cycle, using a certain analogy between the mechanics of the circulatory system and a gauge field such as the electromagnetic one [34], and taking into account that Maxwell’s equations are a particular case of the fluid equations. It is known that shortly after its discovery, the geometric phase was generalized well beyond the adiabatic or even the cyclic cases, and that today it is studied even in dissipative open systems and in various cases of animal locomotion. The analogy may be relevant despite the fact that the respiratory system obviously operates in a gaseous phase instead of a liquid one, while still being coupled to the blood circulation.

According to V. D. Tsvetkov, the ratio between systolic and diastolic time in humans and other mammals averages the same reciprocal values of the golden mean, and also the ratio of the maximum systolic pressure to the minimum diastolic pressure points to a relative value of 0.618/0.382 on average. Although these values may be arbitrarily approximate, we would have an excellent opportunity here to contrast them mechanically and see if there really is some kind of underlying optimization, since the systolic time already echoes the reflected vascular wave, and the same is true of the diastolic time.

On the other hand there is the Pulse Wave Velocity, which is a measure of arterial elasticity: both are derived from the second law of mechanics through the Moens-Korteweg equation. This wave velocity varies with pressure, as well as with the elasticity of the vessels, increasing with their stiffness. The return distance of the reflex wave and the time it takes increases with height, and a lower diastolic pressure, which indicates less resistance of the whole vascular system, reduces the magnitude of the reflected wave. Treatment of hypertension should focus, it is said, on decreasing the amplitude of the reflected wave, slowing it down, and increasing the distance between the aorta and the return points of this wave.

Now, we can try to apply here Noskov’s retarded potentials with longitudinal waves, as he emphasized their universality and their place in the most elementary feedback; in fact, there is perhaps no better way of illustrating these waves and their correlation with certain proportions in a complete mechanical system than the circulatory system itself.

Since, to a large extent, it seems that we can consider the elasticity of the reflected wave as a retarded Weber-Noskov potential dependent on distance, force and phase velocity, and check whether this results in coupling or resonance conditions that incidentally tend to the values of the golden section. The myocardium is a self-exciting muscle, but the return of the reflex wave also contributes to this, so we have a fair example of a circuit with tension-pressure-deformation transformations that are fed back and that do not differ in essence from the gauge transformations of modern physics, in which there is also an implicit feedback mechanism.

This would be a perfect instance to explore these correlations in a sort of “closed loop” process, even if the system remains open through the breath, which is not contrary to our approach because for us every natural system is open by definition. It allows both numerical simulation and approximation by real physical models created with elastic tubes and coupled “pumps”, so that it can be approached in the most tangible and direct way [35].

However, the idea that the heart is really a pump, being as it is a spiral muscular band, or that the motion of the blood, which generates vortices in the vessels and the heart, is due to pressure, when it is the pressure that is an effect of the former, should be thoroughly revised. In fact this is an excellent example of how we can give a strictly mechanical description while radically questioning not only the form but the very content of causality —the cause-effect relationship. The essential factor of the pressure created is not the heart, but the open component, in this case, the breath and the atmosphere. And although it is clear that these are very different cases, this is in line with our idea of gauge fields and natural processes in general.


The dynamics and biomechanics of the blood pulse can be derived from the applied force, but if we look within modern science for a suitable equivalent to Newton’s three principles of mechanics in open systems such as biological organisms, we do not find it. To find something similar we have to look back to principles that are more “archaic” to us, and then look for a quantitative and mathematical translation.

Actually, the triguna of the Indian Samkya system —samkya means proportion- and its application to the human body as the tridosha in Ayurveda is the better match. The triguna, as it were, is a kind of system of coordinates for modalities of the material world in qualitative terms. The three basic qualities, Tamas, Rajas and Satwa, and their reactive forms in the body, Kapha, Pitta and Vata correspond very well to the mass or amount of inertia, the force or energy, and the dynamic equilibrium through motion (let us say: passivity, activity and balance). But it is evident that in this case we are talking about qualities and the systems are considered open from the start without need for further definition.

So, here is the law of conservation of momentum, not the third law of mechanics, what really should hold here, as a system like this implicitly admits a variable degree of interaction with the environment. In harmony with this, the Ayurveda considers that Vata is the guiding principle of the three since it has autonomy to move by itself in addition to moving the other two. Vata defines the sensitivity of the system in relation to the environment, its degree of permeability or lack thereof. In other words, the state of Vata indicates by itself to which extent the system is effectively open.

In the human body the most explicit and continuous form of interaction with the environment is the breath, and therefore it is just in the order of things that Vata governs this function most directly. Although the doshas are modes or qualities, in the pulse they find a faithful translation in terms of dynamic values and the continuum mechanics —provided we settle for modest degrees of precision, but surely enough to give us a qualitative idea of the dynamics and its basic patterns.

The other two modes are simply what moves and what is moved, but the articulation and coexistence of the three can be understood in very different ways: from a purely mechanical way to a more specifically semiotic one. Here again, the indistinction or ambiguity between kinetic, potential and internal energy, which we have already noticed in relational mechanics, might be of some relevance.

The principle of inertia is a possibility, that of force a brute fact, the action-reaction —the same act seen from two sides- is a relationship of mediation or continuity. We can put them on the same plane or put them on different planes, which constitute an ascending or descending gradation, as in fact are the modalities of the Samkya system.

Actually, it should not be too difficult to find the common ground that the Indian and Chinese semiologies of the pulse have, beyond the differences of terminology and categories; and to move from this common ground to the quantitative, but extremely fluid, language of continuum mechanics. Thus we would have a method to pass from qualitative to quantitative aspects, and vice versa; and to find dynamic patterns that now pass unnoticed. There are several issues here. One is the extent to which these qualitative descriptions can be made consistent.

Another question is to what extent the representation of a qualitative scale can be made intuitive. Let us think, for example, of biofeedback signals, which can be effective under the representation of forces, potentials, and many other more indirect relationships. What is interesting is that these types of assisted feedback do not aim at control and manipulation, but at tuning in to the organizing principle of the dynamics.

From our perspective, as we have already said repeatedly, all physical systems, from galaxies to atoms, have feedback. But what are the physical limits of, let us say a human being, to tune in to other entities? The phase rhythmodynamics and its resonances, the time scale, the energy scale, strain-stress constitutive relations, the dependence on free energy? Or the capacity to align with the Pole that both systems have in common? Is there interference or is there rather a parallelism on the same background?

These are subjects for which science has not yet found even the minimum criteria, but which should help us to overcome the instrumental compulsion, the instrumentation syndrome that has guided human technology since the first tools, and which intensifies as the tools offers less resistance to the user.

One more question is whether this type of trimodal analysis, or even a bimodal one, has a recursive character, as the same feedback and the presence of the continuous proportion in the circulatory system suggest; and what type of recursion is involved.


The characterization of the dynamic equilibrium should always indicate the Pole of the evolution of a system, if it has one. In the case of the Solar System and the planets this is obvious —and notwithstanding, it is still far from receiving the attention it deserves. But it turns out that the bilateral nasal cycle is also telling us about an axis even in a process where polarity does not look very relevant, from the biomechanical point of view, such as the compression and release of a gas in our own organism. This should be of great interest to us, and it provides a thread through which many other things can be revealed.

In fact, the Earth’s own climate or that of other planets, with its great complexity, is a more explicitly polar system than the respiratory regime of any mammal —and in this case the separating barrier would be the intertropical convergence zone. The point of interest here is that, if the analogy is sound, from a thermomechanical point of view the degree of separation that the barrier exerts, possibly associated with a topological torsion, could also be defining the degree of autonomy of the system with respect to the external conditions —let us call it the endogenous component. An endogenous view that would have to be duly complemented with appropriate sensors and observations of the so-called spatial time [36].

If we said before that the fact that an ellipse has in its interior two focuses does not mean that we only have to look inside it for the origin of the forces that determine its shape, the same is true for the disturbances that usually affect other organisms or systems, which does not prevent them from synthesizing in their behavior the product of external and internal factors, in the breath not less than in other balances that run in parallel.

La Tecnociencia y el laboratorio del yo

Imagina que enciendes el móvil. Tienes una aplicación especial con un menú de interfaces para otro componente especial incluido en el hardware, un electrón confinado en un pozo cuántico. El juego consiste en modificar los estados de la partícula con el mínimo de ayuda de interfaz. Hay muchos niveles. En el límite, tendrías que poder soltar tu móvil y sintonizar/interactuar con el electrón a voluntad. ¿Sintonizar o controlar? Esa es la cuestión.

Descargar PDF

Continuar leyendo “La Tecnociencia y el laboratorio del yo”